Skip to main content
Log in

Synthesis and process optimization of symmetric and unsymmetric barbiturates C5-coupled with 2,1-benzisoxazoles

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Benzisoxazoles represent an important pharmacophore in medicinal chemistry. Recently, an unexpected formation of symmetric 3-substituted 2,1-benzisoxazoles through reduction of 5-(2-nitrobenzylidene)barbiturates has been described. This reductive intramolecular heterocyclization probably involves a nitroso intermediary. To improve the previous reaction conditions, the nature of the reducing agent and additives, reaction time and solvents were evaluated. By applying the optimized conditions, several symmetric and unsymmetric barbiturates C5-coupled with 2,1-benzisoxazoles were prepared with an yield of 52–87%. From this set, seven compounds were novel and the unsymmetric nature of the (thio)barbituric acid moiety was explored. For that, the total synthesis, starting from the respective urea or thiourea, was successfully performed, and 11 thiobarbiturates, benzylidene barbiturate and thiobarbiturate precursors are described.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Banerjee B (2017) Recent developments on ultrasound-assisted one-pot multicomponent synthesis of biologically relevant heterocycles. Ultrason Sonochem 35((A)):15–35. https://doi.org/10.1016/j.ultsonch.2016.10.010

    Article  CAS  PubMed  Google Scholar 

  2. Williams DA, Lemke TL (2008) Foye’s principles of medicinal chemistry 7th edn. Lippincott Williams and Wilkins, Philadelphia, Baltimore, New York, pp 489–569

  3. Figueiredo J, Serrano JL, Cavalheiro E, Keurulainen L, Yli-Kauhaluoma J, Moreira VM, Ferreira S, Domingues FC, Silvestre S, Almeida P (2018) Trisubstituted barbiturates and thiobarbiturates: synthesis and biological evaluation as xanthine oxidase inhibitors, antioxidants, antibacterial and anti-proliferative agents. Eur J Med Chem 143:829–842. https://doi.org/10.1016/j.ejmech.2017.11.070

    Article  CAS  PubMed  Google Scholar 

  4. Shaker Raafat M, Ishak Esam A (2011) Barbituric acid utility in multi-component reactions. Z Naturforsch B 66(12):1189–1201. https://doi.org/10.1515/znb-2011-1201

    Article  Google Scholar 

  5. Mohammadi Ziarani G, Aleali F, Lashgari N (2016) Recent applications of barbituric acid in multicomponent reactions. RSC Adv 6(56):50895–50922. https://doi.org/10.1039/C6RA09874F

    Article  CAS  Google Scholar 

  6. Lopez-Munoz F, Ucha-Udabe R, Alamo C (2005) The history of barbiturates a century after their clinical introduction. Neuropsych Dis Treat 1(4):329–343

    CAS  Google Scholar 

  7. Ling T, Maier J, Das S, Budhraja A, Bassett R, Potts MB, Shelat A, Rankovic Z, Opferman JT, Rivas F (2019) Identification of substituted 5-membered heterocyclic compounds as potential anti-leukemic agents. Eur J Med Chem 164:391–398. https://doi.org/10.1016/j.ejmech.2018.12.059

    Article  CAS  PubMed  Google Scholar 

  8. Keerthi Krishnan K, Ujwaldev SM, Saranya S, Anilkumar G, Beller M (2019) Recent advances and perspectives in the synthesis of heterocycles via zinc catalysis. Adv Synth Catal 361(3):382–404. https://doi.org/10.1002/adsc.201800868

    Article  CAS  Google Scholar 

  9. Ma C, Jiang F, Sheng F-T, Jiao Y, Mei G-J, Shi F (2018) Design and catalytic asymmetric construction of axially chiral 3,3′-bisindole skeletons. Angew Chem Int Edit. https://doi.org/10.1002/anie.201811177

    Article  Google Scholar 

  10. Varvounis G, Gerontitis IE, Gkalpinos V (2018) Metal-catalyzed synthesis of five-membered ring N-heterocycles: a recent update. Chem Heterocycl Compd 54(3):249–268. https://doi.org/10.1007/s10593-018-2260-8

    Article  CAS  Google Scholar 

  11. Ma C, Zhou J-Y, Zhang Y-Z, Jiao Y, Mei G-J, Shi F (2018) Synergistic-catalysis-enabled reaction of 2-indolymethanols with oxonium ylides for the construction of 3-indolyl-3-alkoxy oxindole frameworks. Chem-Asian J 13(17):2549–2558. https://doi.org/10.1002/asia.201800620

    Article  CAS  PubMed  Google Scholar 

  12. Mei G-J, Shi F (2018) Catalytic asymmetric synthesis of spirooxindoles: recent developments. Chem Commun 54(50):6607–6621. https://doi.org/10.1039/C8CC02364F

    Article  CAS  Google Scholar 

  13. Jorge ARS, Rui MAP, Samuel MS (2009) Recent advances of bismuth(III) salts in organic chemistry: application to the synthesis of heterocycles of pharmaceutical interest. Curr Org Synth 6(4):426–470. https://doi.org/10.2174/157017909789108701

    Article  Google Scholar 

  14. Yoshikazu U (2016) 1,2-Benzisoxazole: a privileged structure with a potential for polypharmacology. Curr Pharm Des 22(21):3201–3211. https://doi.org/10.2174/1381612822666160224142648

    Article  CAS  Google Scholar 

  15. Rakesh KP, Shantharam CS, Sridhara MB, Manukumar HM, Qin H-L (2017) Benzisoxazole: a privileged scaffold for medicinal chemistry. MedChemComm 8(11):2023–2039. https://doi.org/10.1039/C7MD00449D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Serrano JL, Cavalheiro E, Barroso S, Romão MJ, Silvestre S, Almeida P (2017) A synthetic route to novel 3-substituted-2,1-benzisoxazoles from 5-(2-nitrobenzylidene)(thio)barbiturates. CR Chim 20(11):990–995. https://doi.org/10.1016/j.crci.2017.10.002and references cited therein

    Article  CAS  Google Scholar 

  17. Wiȩcław M, Bobin M, Kwast A, Bujok R, Wróbel Z, Wojciechowski K (2015) General synthesis of 2,1-benzisoxazoles (anthranils) from nitroarenes and benzylic C–H acids in aprotic media promoted by combination of strong bases and silylating agents. Mol Divers 19(4):807–816. https://doi.org/10.1007/s11030-015-9627-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Friedländer P, Henriques R (1882) Zur reduktion des orthonitrobenzaldehyds. Ber Dtsch Chem Ges 15(2):2105–2110. https://doi.org/10.1002/cber.188201502147

    Article  Google Scholar 

  19. Budruev AV, Dzhons DY (2016) Synthesis of 2,1-benzisoxazoles (microreview). Chem Heterocycl Compd 52(7):441–443. https://doi.org/10.1007/s10593-016-1908-5

    Article  CAS  Google Scholar 

  20. Kotov AD, Prokaznikov MA, Antonova EA, Rusakov AI (2014) Synthesis of nitrogen-containing heterocycles from nitroarenes (minireview). Chem Heterocycl Compd 50(5):647–657. https://doi.org/10.1007/s10593-014-1517-0

    Article  CAS  Google Scholar 

  21. Krüger S (2013) Meier C (2013) Synthesis of site-specific damaged DNA strands by 8-(acetylarylamino)-2′-deoxyguanosine adducts and effects on various DNA polymerases. Eur J Org Chem 6:1158–1169. https://doi.org/10.1002/ejoc.201200984

    Article  CAS  Google Scholar 

  22. Ren P-D, Pan X-W, Jin Q-H, Yao Z-P (1997) Reduction of nitroarenes to n-arylhydroxylamines with KBH4/BiCl3 system. Synth Commun 27(20):3497–3503. https://doi.org/10.1080/00397919708007070

    Article  CAS  Google Scholar 

  23. Bordwell FG, Liu W-Z (1996) Equilibrium acidities and homolytic bond dissociation energies of N–H and/or O–H bonds in N-phenylhydroxylamine and its derivatives. J Am Chem Soc 118(37):8777–8781. https://doi.org/10.1021/ja960152n

    Article  CAS  Google Scholar 

  24. Wurz RP, Charette AB (2004) An expedient and practical method for the synthesis of a diverse series of cyclopropane α-amino acids and amines. J Org Chem 69(4):1262–1269. https://doi.org/10.1021/jo035596y

    Article  CAS  PubMed  Google Scholar 

  25. Lin Y-I, Lang SA (1980) Selective reduction of nitro-heterocycles with sodium sulfide in aqueous p-dioxane. J Heterocycl Chem 17(6):1273–1275. https://doi.org/10.1002/jhet.5570170625

    Article  CAS  Google Scholar 

  26. Padiya KJ, Gavade S, Kardile B, Tiwari M, Bajare S, Mane M, Gaware V, Varghese S, Harel D, Kurhade S (2012) Unprecedented “in water” imidazole carbonylation: paradigm shift for preparation of urea and carbamate. Org Lett 14(11):2814–2817. https://doi.org/10.1021/ol301009d

    Article  CAS  PubMed  Google Scholar 

  27. Whiteley MA (1907) CXXIII.—Studies in the barbituric acid series. I. 1: 3-Diphenylbarbituric acid and some coloured derivatives. J Chem Soc Trans 91:1330–1350. https://doi.org/10.1039/CT9079101330

    Article  Google Scholar 

  28. Ramisetti SR, Pandey MK, Lee SY, Karelia D, Narayan S, Amin S, Sharma AK (2018) Design and synthesis of novel thiobarbituric acid derivatives targeting both wild-type and BRAF-mutated melanoma cells. Eur J Med Chem 143:1919–1930. https://doi.org/10.1016/j.ejmech.2017.11.006

    Article  CAS  PubMed  Google Scholar 

  29. Wang F, Zhao P, Xi C (2011) Copper-catalyzed one-pot synthesis of 2-thioxo-2, 3-dihydroquinazolin-4 (1H)-ones from ortho-bromobenzamides and isothiocyanates. Tetrahedron Lett 52(2):231–235. https://doi.org/10.1016/j.tetlet.2010.11.010

    Article  CAS  Google Scholar 

  30. Gonçalves IL, Davi L, Rockenbach L, das Neves GM, Kagami LP, Canto RFS, Figueiró F, Battastini AMO, Eifler-Lima VL (2018) Versatility of the Biginelli reaction: synthesis of new biphenyl dihydropyrimidin-2-thiones using different ketones as building blocks. Tetrahedron Lett 59(28):2759–2762. https://doi.org/10.1016/j.tetlet.2018.06.006

    Article  CAS  Google Scholar 

  31. Singh K, Sharma S (2017) An isocyanide based multi-component reaction under catalyst- and solvent-free conditions for the synthesis of unsymmetrical thioureas. Tetrahedron Lett 58(3):197–201. https://doi.org/10.1016/j.tetlet.2016.11.082

    Article  CAS  Google Scholar 

  32. Koshti VS, Thorat SH, Gote RP, Chikkali SH, Gonnade RG (2016) The impact of modular substitution on crystal packing: the tale of two ureas. Cryst Eng Commun 18(37):7078–7094. https://doi.org/10.1039/C6CE01324D

    Article  CAS  Google Scholar 

  33. Mohammadi L, Zolfigol MA, Khazaei A, Yarie M, Ansari S, Azizian S, Khosravi M (2018) Synthesis of nanomagnetic supported thiourea–copper(I) catalyst and its application in the synthesis of triazoles and benzamides. Appl Organomet Chem 32(1):e3933. https://doi.org/10.1002/aoc.3933

    Article  CAS  Google Scholar 

  34. Nakashima K (1977) The coloration reaction mechanism of 6-aminouracil derivatives with Ehrlich reagent and its application to the colorimetric determination method. II (author’s transl). Yakuga Zasshi 97 (8):906–910. https://doi.org/10.1248/yakushi1947.97.8_906

  35. Manick A-D, Berhal F, Prestat G (2018) Development of a one-pot four C–C bond-forming sequence based on palladium/ruthenium tandem catalysis. Org Lett 20(1):194–197. https://doi.org/10.1021/acs.orglett.7b03556

    Article  CAS  PubMed  Google Scholar 

  36. Botsi S, Tsolomitis A (2007) One or two step acid mediated cyclocondensation process for the preparation of 5-carbethoxy-2-thiouracils from diethyl ethoxymethylenemalonate and thioureas. Heterocycl Commun 13(4):229–234. https://doi.org/10.1515/HC.2007.13.4.229

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by FEDER funds through the POCI-COMPETE 2020-Operational Programme Competitiveness and Internationalization in Axis I-Strengthening research, technological development and innovation (Project No. 007491) and National Funds by FCT-Foundation for Science and Technology (Project UID/Multi/00709). J. L. Serrano is thankful to Santander-Totta/UBI for the fellowship (BID/ICI-UID FC/Santander Universidades-UBI/2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Almeida.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1490 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serrano, J.L., Soeiro, P.F., Reis, M.A. et al. Synthesis and process optimization of symmetric and unsymmetric barbiturates C5-coupled with 2,1-benzisoxazoles. Mol Divers 24, 155–166 (2020). https://doi.org/10.1007/s11030-019-09937-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-019-09937-4

Keywords

Navigation