Skip to main content
Log in

Aroyl and acyl cyanides as orthogonal protecting groups or as building blocks for the synthesis of heterocycles

  • Short Review
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

α-Cyanoketones represent a synthetically attractive scaffold possessing bifunctional reactivity which enabled synthesis of a diversity of products. This involves reaction of nucleophiles with electrophilic carbonyl carbon performing an efficient and regioselective way to acylation reaction, cycloaddition of activated cyano function with dipolarophiles, metal-catalyzed cross-dehydrogenative coupling carbocyanation across C–C multiple bonds as well as hydrocyanation. This review provides the recent developments in the chemistry of α-cyanoketones which will be beneficial for researchers and scientists in such field.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Scheme 19
Scheme 20
Scheme 21
Scheme 22
Scheme 23
Scheme 24
Scheme 25
Scheme 26
Scheme 27
Scheme 28
Fig. 1
Scheme 29

Similar content being viewed by others

References

  1. Grennne TW, Wuts PG (1999) Protective groups in organic synthesis, 3rd edn. Wiley, New York, pp 173–200

    Book  Google Scholar 

  2. Schmidt RR (1986) New methods for the synthesis of glycosides and oligosaccharides-are there alternatives to the Koenigs-Knorr method? [new synthetic methods (56)]. AngewChemInt Ed 25:212–235. https://doi.org/10.1002/anie.198602121

    Article  Google Scholar 

  3. Lay L, Windmüller R, Reinhardt S, Schmidt RR (1997) A simple access to lactose-derived building blocks required in glycoconjugate synthesis. Carbohydr Res 303:39–49. https://doi.org/10.1016/S0008-6215(97)00135-3

    Article  CAS  PubMed  Google Scholar 

  4. Coppa GV, Gabrielli O, Giorgi P, Catassi C, Montanari MP, Varaldo PE, Nichols BL (1990) Preliminary study of breastfeeding and bacterial adhesion to uroepithelial cells. Lancet 335:569–571. https://doi.org/10.1016/0140-6736(90)90350-E

    Article  CAS  PubMed  Google Scholar 

  5. Cravioto A, Tello A, Villaf H, Ruiz J, VedovoSd Neeser J-R (1991) Inhibition of localized adhesion of enteropathogenic Escherichia coli to HEp-2 cells by immunoglobulin and oligosaccharide fractions of human colostrum and breast milk. J Infect Dis 163:1247–1255

    Article  CAS  Google Scholar 

  6. Castoldi S, Cravini M, Micheli F, Piga E, Russo G, Seneci P, Lay L (2004) Solution synthesis of two orthogonally protected lactosides as tetravalent disaccharide-based scaffolds. Eur J Org Chem 2004:2853–2862. https://doi.org/10.1002/ejoc.200300807

    Article  CAS  Google Scholar 

  7. Mandal PK, Misra AK (2008) Concise synthesis of the pentasaccharide O-antigen of Escherichia coli O83:K24:H31 present in the Colinfant vaccine. Glycoconj J 25:713–722. https://doi.org/10.1007/s10719-008-9120-1

    Article  CAS  PubMed  Google Scholar 

  8. Dhénin SGY, Moreau V, Morel N, Nevers M-C, Volland H, Créminon C, Djedaïni-Pilard F (2008) Synthesis of an anthrose derivative and production of polyclonal antibodies for the detection of anthrax spores. Carbohydr Res 343:2101–2110. https://doi.org/10.1016/j.carres.2007.11.030

    Article  CAS  PubMed  Google Scholar 

  9. Prasad AK, Kumar V, Maity J, Wang Z, Ravikumar VT, Sanghvi YS, Parmar VS (2005) Benzoyl cyanide: a mild and efficient reagent for benzoylation of nucleosides. Synth Commun 35:935–945. https://doi.org/10.1081/SCC-200051693

    Article  CAS  Google Scholar 

  10. Prasad AK, Kumar V, Malhotra S, Ravikumar VT, Sanghvi YS, Parmar VS (2005) ‘Green’ methodology for efficient and selective benzoylation of nucleosides using benzoyl cyanide in an ionic liquid. Bioorganic Med Chem 13:4467–4472. https://doi.org/10.1016/j.bmc.2005.04.038

    Article  CAS  Google Scholar 

  11. Grindley TB (1998) Applications of tin-containing intermediates to carbohydrate chemistry. Adv Carbohydr Chem Biochem 53:17–142. https://doi.org/10.1002/chin.199922275

    Article  CAS  PubMed  Google Scholar 

  12. Xu H, Lu Y, Zhou Y, Ren B, Pei Y, Dong H, Pei Z (2014) Regioselective benzylation of diols and polyols by catalytic amounts of an organotin reagent. Adv Synth Catal 356:1735–1740. https://doi.org/10.1002/adsc.201301152

    Article  CAS  Google Scholar 

  13. Muramatsu W, Takemoto Y (2013) Selectivity switch in the catalytic functionalization of nonprotected carbohydrates: selective synthesis in the presence of anomeric and structurally similar carbohydrates under mild conditions. J Org Chem 78:2336–2345. https://doi.org/10.1021/jo3024279

    Article  CAS  PubMed  Google Scholar 

  14. Lee D, Williamson CL, Chan L, Taylor MS (2012) Regioselective, borinic acid-catalyzed monoacylation, sulfonylation and alkylation of diols and carbohydrates: expansion of substrate scope and mechanistic studies. J Am Chem Soc 134:8260–8267. https://doi.org/10.1021/ja302549c

    Article  CAS  PubMed  Google Scholar 

  15. Zhou Y, Ramström O, Dong H (2012) Organosilicon-mediated regioselective acetylation of carbohydrates. Chem Commun 48:5370–5372. https://doi.org/10.1039/C2CC31556D

    Article  CAS  Google Scholar 

  16. Ren B, Rahm M, Zhang X, Zhou Y, Dong H (2014) Regioselective acetylation of diols and polyols by acetate catalysis: mechanism and application. J Org Chem 79:8134–8142. https://doi.org/10.1021/jo501343x

    Article  CAS  PubMed  Google Scholar 

  17. Zhang X, Ren B, Ge J, Pei Z, Dong H (2016) A green and convenient method for regioselective mono and multiple benzoylation of diols and polyols. Tetrahedron 72:1005–1010. https://doi.org/10.1016/j.tet.2015.12.074

    Article  CAS  Google Scholar 

  18. Ren B, Ramström O, Zhang Q, Ge J, Dong H (2016) Corrigendum: an iron(III) catalyst with unusually broad substrate scope in regioselective alkylation of diols and polyols. Chem Eur J 22:7662. https://doi.org/10.1002/chem.201601886

    Article  CAS  PubMed  Google Scholar 

  19. Kurahashi T, Mizutani T, J-i Yoshida (2002) Functionalized DMAP catalysts for regioselective acetylation of carbohydrates. Tetrahedron 58:8669–8677. https://doi.org/10.1016/S0040-4020(02)01098-0

    Article  CAS  Google Scholar 

  20. Kattnig E, Albert M (2004) Counterion-directed regioselective acetylation of octyl β-d-glucopyranoside. Org Lett 6:945–948. https://doi.org/10.1021/ol0364935

    Article  CAS  PubMed  Google Scholar 

  21. Zhou Y, Rahm M, Wu B, Zhang X, Ren B, Dong H (2013) H-bonding activation in highly regioselective acetylation of diols. J Org Chem 78:11618–11622. https://doi.org/10.1021/jo402036u

    Article  CAS  PubMed  Google Scholar 

  22. Pedersen CM, Olsen J, Brka AB, Bols M (2011) Quantifying the electronic effects of carbohydrate hydroxy groups by using aminosugar models. Chem Eur J 17:7080–7086. https://doi.org/10.1002/chem.201100020

    Article  CAS  PubMed  Google Scholar 

  23. Peng P, Linseis M, Winter RF, Schmidt RR (2016) Regioselective acylation of diols and triols: the cyanide effect. J Am Chem Soc 138:6002–6009. https://doi.org/10.1021/jacs.6b02454

    Article  CAS  PubMed  Google Scholar 

  24. De Oliveira CMA, Porto A, Bittrich V, Vencato I, Marsaioli AJ (1996) Floral resins of Clusia spp.: chemical composition and biological function. Tetrahedron Lett 37:6427–6430. https://doi.org/10.1016/0040-4039(96)00656-9

    Article  Google Scholar 

  25. Hussain RA, Owegby AG, Parimoo P, Waterman PG (1982) Kolanone, a Novel Polyisoprenylated Benzophenone with Antimicrobial Properties from the Fruit of Garcinia kola. Planta Med 44:78–81. https://doi.org/10.1055/s-2007-971406

    Article  CAS  PubMed  Google Scholar 

  26. Raikar SB, Nuhant P, Delpech B, Marazano C (2008) Synthesis of polyprenylated benzoyl phloroglucinols by regioselective prenylation of phloroglucinol in an aqueous medium. Eur J Org Chem 2008:1358–1369. https://doi.org/10.1002/ejoc.200701009

    Article  CAS  Google Scholar 

  27. Horeischi F, Guttroff C, Plietker B (2015) Theenantioselective total synthesis of (+)-clusianone. Chem Commun 51:2259–2261. https://doi.org/10.1039/C4CC09701G

    Article  CAS  Google Scholar 

  28. Biber N, Möws K, Plietker B (2011) The total synthesis of hyperpapuanone, hyperibone L, epi-clusianone and oblongifolin A. Nat Chem 3:938. https://doi.org/10.1038/nchem.1170

    Article  CAS  PubMed  Google Scholar 

  29. Marvel CS, Brace NO, Miller FA, Johnson AR (1949) Benzoyl cyanide dimer and the addition of benzoyl cyanide to aromatic aldehydes. J Am Chem Soc 71:34–36. https://doi.org/10.1021/ja01169a011

    Article  CAS  Google Scholar 

  30. Scholl M, Lim C-K, Fu GC (1995) Convenient and efficient conversion of aldehydes to acylated cyanohydrins using tributyltin cyanide as catalyst. J Org Chem 60:6229–6231. https://doi.org/10.1021/jo00124a052

    Article  CAS  Google Scholar 

  31. Tian J, Yamagiwa N, Matsunaga S, Shibasaki M (2002) An asymmetric cyanation reaction and sequential asymmetric cyanation-nitroaldol reaction using a [YLi3{tris(binaphthoxide)}] single catalyst component: catalyst tuning with achiral additives. Angew Chem Int Ed 41:3636–3638. https://doi.org/10.1002/1521-3773(20021004)41:19<3636::AID-ANIE3636>3.0.CO;2-B

    Article  CAS  Google Scholar 

  32. Pan SC, Zhou J, List B (2006) Catalytic acylcyanation of imines with acetylcyanide. Synlett 19:3275–3276. https://doi.org/10.1055/s-2006-951543

    Article  CAS  Google Scholar 

  33. Pan SC, List B (2007) Catalytic one-pot, three-component acyl-strecker reaction. Synlett 2:318–320. https://doi.org/10.1055/s-2007-968008

    Article  CAS  Google Scholar 

  34. Pan SC, List B (2007) Catalytic asymmetric three-component acyl-strecker reaction. Org Lett 9:1149–1151. https://doi.org/10.1021/ol0702674

    Article  CAS  PubMed  Google Scholar 

  35. Murayama H, Nagao K, Ohmiya H, Sawamura M (2016) Phosphine-catalyzed vicinal acylcyanation of alkynoates. Org Lett 18:1706–1709. https://doi.org/10.1021/acs.orglett.6b00677

    Article  CAS  PubMed  Google Scholar 

  36. Opatz T (2009) The chemistry of deprotonated α-aminonitriles. Synthesis 12:1941–1959. https://doi.org/10.1055/s-0029-1216839

    Article  CAS  Google Scholar 

  37. Otto N, Opatz T (2014) Heterocycles from α-aminonitriles. Chem Eur J 20:13064–13077. https://doi.org/10.1002/chem.201403956

    Article  CAS  PubMed  Google Scholar 

  38. Enders D, Shilvock JP (2000) Some recent applications of α-amino nitrile chemistry. Chem Soc Rev 29:359–373. https://doi.org/10.1039/A908290E

    Article  CAS  Google Scholar 

  39. Hayashi Y, Shoji M, Yamaguchi S, Mukaiyama T, Yamaguchi J, Kakeya H, Osada H (2003) Asymmetric total synthesis of pseurotin A. Org Lett 5:2287–2290. https://doi.org/10.1021/ol034630s

    Article  CAS  PubMed  Google Scholar 

  40. Yamaguchi J, Kakeya H, Uno T, Shoji M, Osada H, Hayashi Y (2005) Determination by asymmetric total synthesis of the absolute configuration of lucilactaene, a cell-cycle inhibitor in p53-transfected cancer cells. Angew Chem Int Ed 44:3110–3115. https://doi.org/10.1002/anie.200500060

    Article  CAS  Google Scholar 

  41. Le Vézouët R, White AJP, Burrows JN, Barrett AGM (2006) Synthetic studies on the CDEF ring system of lactonamycin. Tetrahedron 62:12252–12263. https://doi.org/10.1016/j.tet.2006.10.004

    Article  CAS  Google Scholar 

  42. Grunwald C, Rundfeldt C, Lankau H-J, Arnold T, Höfgen N, Dost R, Egerland U, Hofmann H-J, Unverferth K (2006) Synthesis, pharmacology, and structure–activity relationships of novel imidazolones and pyrrolones as modulators of GABAA receptors. J Med Chem 49:1855–1866. https://doi.org/10.1021/jm0509400

    Article  CAS  PubMed  Google Scholar 

  43. Gu Z, Zakarian A (2010) Concise total synthesis of sintokamides A, B, and E by a unified, protecting-group-free strategy. Angew Chem Int Ed 49:9702–9705. https://doi.org/10.1002/anie.201005354

    Article  CAS  Google Scholar 

  44. Husain A, Alam MM, Shaharyar M, Lal S (2010) Antimicrobial activities of some synthetic butenolides and their pyrrolone derivatives. J Enzyme Inhib Med Chem 25:54–61. https://doi.org/10.3109/14756360902940860

    Article  CAS  PubMed  Google Scholar 

  45. Hashem AI, Youssef ASA, Kandeel KA, Abou-Elmagd WSI (2007) Conversion of some 2(3H)-furanones bearing a pyrazolyl group into other heterocyclic systems with a study of their antiviral activity. Eur J Med Chem 42:934–939. https://doi.org/10.1016/j.ejmech.2006.12.032

    Article  CAS  PubMed  Google Scholar 

  46. Nobuyuki O, Toshihiro N, Akira T, Shigehiko T, Yasunori O (1994) U.S. Patent 5 312 929

  47. Howard EG, Lindsey RV, Theobald CW (1959) Synthesis of 3-substituted 5-hydroxy-3-pyrrolin-2-ones. J Am Chem Soc 81:4355–4358. https://doi.org/10.1021/ja01525a063

    Article  CAS  Google Scholar 

  48. Gilbert JC, Blackburn BK (1986) Reactions of alkylidenecarbenes derived from N, N-disubstituted-2-oxopropanamides: the formation of 3-pyrrol-2-ones and 2-butyn-amides. J Org Chem 51:3656–3663. https://doi.org/10.1021/jo00369a019

    Article  CAS  Google Scholar 

  49. Gilbert JC, Blackburn BK (1986) Novel preparation of cyclohepta[b]pyrrol-2-ones. J Org Chem 51:4087–4089. https://doi.org/10.1021/jo00371a040

    Article  CAS  Google Scholar 

  50. Imhof W, Berger D, Kötteritzsch M, Rost M, Schönecker B (2001) The stereoselective Ru3(CO)12-catalyzed synthesis of steroidal 1,3-dihydropyrrol-2-one derivatives from α, β-unsaturated imines, carbon monoxide and ethylene. Adv Synth Catal 343:795–801. https://doi.org/10.1002/1615-4169(20011231)343:8<795::AID-ADSC795>3.0.CO;2-M

    Article  CAS  Google Scholar 

  51. Berger D, Imhof W (2000) Ruthenium catalyzed one-pot synthesis of dihydro-pyrrol-2-one derivatives from α, β-unsaturated Imines, carbon monoxide and ethylene. Tetrahedron 56:2015–2023. https://doi.org/10.1016/S0040-4020(00)00118-6

    Article  CAS  Google Scholar 

  52. Klumpp DA, Zhang Y, O’Connor MJ, Esteves PM, de Almeida LS (2007) Aza-Nazarov reaction and the role of superelectrophiles. Org Lett 9:3085–3088. https://doi.org/10.1021/ol0711570

    Article  CAS  PubMed  Google Scholar 

  53. Hill L, Hunter GA, Imam SH, McNab H, O’Neill WJ (2009) 3-Hydroxy-1H-pyrrole. Synthesis 15:2535–2538. https://doi.org/10.1055/s-0029-1217422

    Article  CAS  Google Scholar 

  54. Xiong M, Yu S, Xie X, Li S, Liu Y (2015) Reactions of zirconocene–1-Aza-1,3-diene complexes with acyl cyanides: substrate-dependent synthesis of acyl- or non-acyl-substituted pyrroles. Organometallics 34:5597–5601. https://doi.org/10.1021/acs.organomet.5b00801

    Article  CAS  Google Scholar 

  55. Hirata Y, Yada A, Morita E, Nakao Y, Hiyama T, Ohashi M, Ogoshi S (2010) Nickel/Lewis acid-catalyzed cyanoesterification and cyanocarbamoylation of alkynes. J Am Chem Soc 132:10070–10077. https://doi.org/10.1021/ja102346v

    Article  CAS  PubMed  Google Scholar 

  56. Mekie MC, Paton RM (2002) Nitrile sulfides. Part 13. Synthesis of 5-acyl-1,2,4-thiadiazoles by cycloaddition of nitrile sulfides to acylcyanides. Arkiroc 6:15–21

    Google Scholar 

  57. Yu Y, Watanabe N, Ohno M, Eguchi S (1995) Synthesis of novel carbo- and heteropolycycles. Part 30. 1,3-Dipolar cycloaddition of nitrile functions with some selected nitrones. Efficient synthesis of 2,3-dihydro-1,2,4-oxadiazole derivatives. J Chem Soc Perkin Trans 1:1417–1421. https://doi.org/10.1039/P19950001417

    Article  Google Scholar 

  58. Luthman K, Borg S, Hacksell U (1999) Synthesis and use of pseudopeptides derived from 1,2,4-oxadiazole-, 1,3,4-oxadiazole-, and 1,2,4-triazole-based dipeptidomimetics. Methods Mol Med 23:1–23. https://doi.org/10.1385/0-89603-517-4:1

    Article  CAS  PubMed  Google Scholar 

  59. Borg S, Vollinga RC, Labarre M, Payza K, Terenius L, Luthman K (1999) Design, synthesis, and evaluation of Phe-Gly mimetics: heterocyclic building blocks for pseudopeptides. J Med Chem 42:4331–4342. https://doi.org/10.1021/jm990197+

    Article  CAS  PubMed  Google Scholar 

  60. Emmitte KA (2011) Recent advances in the design and development of novel negative allosteric modulators of mGlu5. ACS Chem Neurosci 2:411–432. https://doi.org/10.1021/cn2000266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kandre S, Bhagat PR, Sharma R, Gupte A (2013) Microwave assisted synthesis of 3,5-disubstituted 1,2,4-oxadiazoles from substituted amidoximes and benzoyl cyanides. Tetrahedron Lett 54:3526–3529. https://doi.org/10.1016/j.tetlet.2013.04.101

    Article  CAS  Google Scholar 

  62. Syroeshkina YS, Kuznetsov VV, Lyssenko KA, Makhova NN (2009) Insertion of carbon disulfide and the nitrile group into the diaziridine ring of 6-aryl-1,5-diazabicyclo[3.1.0]hexanes in ionic liquids catalyzed by BF3 Et2O. Russ Chem Bull 58:366–379. https://doi.org/10.1007/s11172-010-0018-2

    Article  CAS  Google Scholar 

  63. Martinez-Ariza G, Mehari BT, Pinho LAG, Foley C, Day K, Jewett JC, Hulme C (2017) Synthesis of fluorescent heterocycles via a Knoevenagel/[4 + 1]-cycloaddition cascade using acetyl cyanide. Org Biomol Chem 15:6076–6079. https://doi.org/10.1039/C7OB01239J

    Article  CAS  PubMed  Google Scholar 

  64. Tietze LF, Modi A (2000) Multicomponent domino reactions for the synthesis of biologically active natural products and drugs. Med Res Rev 20:304–322. https://doi.org/10.1002/1098-1128(200007)20:4<304::AID-MED3>3.0.CO;2-8

    Article  CAS  PubMed  Google Scholar 

  65. Touré BB, Hall DG (2009) Natural product synthesis using multicomponent reaction strategies. Chem Rev 109:4439–4486. https://doi.org/10.1021/cr800296p

    Article  CAS  PubMed  Google Scholar 

  66. Hanson SM, Morlock EV, Satyshur KA, Czajkowski C (2008) Structural requirements for eszopiclone and zolpidem binding to the γ-aminobutyric acid type-A (GABAA) receptor are different. J Med Chem 51:7243–7252. https://doi.org/10.1021/jm800889m

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ollinger J, Bailey MA, Moraski GC, Casey A, Florio S, Alling T, Miller MJ, Parish T (2013) A dual read-out assay to evaluate the potency of compounds active against Mycobacterium tuberculosis. PLoS ONE 8:e60531. https://doi.org/10.1371/journal.pone.0060531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Abdel Hameed AM, Moustafa SM, Al-Mousawi SM, Awed RR, Sadek KU (2017) An efficient and catalyst-free synthesis of N-arylidene-2-arylimidazo[1,2-a]pyridine-3-ylamine derivatives via Strecker reaction under controlled microwave heating. Green Process Synth 6:371–375. https://doi.org/10.1515/gps-2017-0019

    Article  CAS  Google Scholar 

  69. Bencková M, Krutošíková A (1999) 5-Aminofuro[3,2-c]pyridinium tosylates and substituted Furo[3,2-c]pyridine N-Oxides: synthesis and reactions. Collect Czechoslov Chem Commun 64:539–547. https://doi.org/10.1135/cccc19990539

    Article  Google Scholar 

  70. Mojumadar SC, Simon P, Krutosikova A (2009) [1]Benzofuro[3,2-c]pyridine synthesis and coordination reactions. J Therm Anal Calorim 96:103–109. https://doi.org/10.1007/s10973-008-9881-6

    Article  CAS  Google Scholar 

  71. Naiman A, Vollhardt KPC (2003) A cobalt-catalyzed one-step synthesis of annelated pyridines. Angew Chem Int Ed Eng 16:708–709. https://doi.org/10.1002/anie.197707081

    Article  Google Scholar 

  72. Zhou Z, PietroBattaglia L, Paolo Chiusoli G, Costa M, Nardelli M, Pelizzi C, Predieri G (1991) Reactivity of cobalt(O) and cobalt(I) complexes with diynes towards C. C, C. N, and C. C bonds. X-Ray structure of a cyclopentadienylcobaltacyclopentadiene complex. J Organomet Chem 417:51–63. https://doi.org/10.1016/0022-328X(91)80160-L

    Article  CAS  Google Scholar 

  73. Yamamoto Y, Okuda S, Itoh K (2001) Ruthenium(ii)-catalyzed [2 + 2 + 2] cycloaddition of 1,6-diynes with electron-deficient nitriles. Chem Commun. https://doi.org/10.1039/b102588k

    Article  Google Scholar 

  74. Swinbourne FJ, Hunt JH, Klinkert G (1979) Advances in indolizine chemistry. Adv Heterocycl Chem 23:103–170. https://doi.org/10.1016/S0065-2725(08)60842-9

    Article  Google Scholar 

  75. Rostami-Charati F, Hossaini Z, Gharaee E, Khalilzadeh MA (2013) One-pot three-component synthesis of oxazine derivatives in water. J Heterocycl Chem 50:E174–E177. https://doi.org/10.1002/jhet.1112

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamal Usef Sadek.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadek, K.U., Mekheimer, R.A., Abd-Elmonem, M. et al. Aroyl and acyl cyanides as orthogonal protecting groups or as building blocks for the synthesis of heterocycles. Mol Divers 23, 1065–1084 (2019). https://doi.org/10.1007/s11030-019-09915-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-019-09915-w

Keywords

Navigation