Skip to main content
Log in

Facile and highly diastereo and regioselective synthesis of novel octahydroacridine-isoxazole and octahydroacridine-1,2,3-triazole molecular hybrids from citronella essential oil

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

A novel and highly efficient synthetic approach for the expedite construction of new octahydroacridine-isoxazole- and octahydroacridine-1,2,3-triazole-based molecular hybrids is first reported. Rapid access to the octahydroacridine core was achieved in a highly diastereoselective fashion via cationic Povarov reaction of N-propargyl anilines and citronella essential oil (Cymbopogon nardus). The subsequent 1,3-dipolar and Cu (I) catalyzed alkyne-azide cycloaddition reaction of the terminal alkyne fragment with the corresponding oxime or azide affords the desired 3,5-isoxazoles and 1,2,3-triazoles, respectively, as interesting molecular hybrid models for pharmacological studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4

Similar content being viewed by others

References

  1. Beruvé G (2016) An overview of molecular hybrids in drug discovery. Expert Opin Drug Discov 11:281–305. https://doi.org/10.1517/17460441.2016.1135125

    Article  CAS  Google Scholar 

  2. Akhtar J, Khan AA, Ali Z, Haider R, Yar MS (2017) Structure-activity relationship (SAR) study and design strategies of nitrogen-containing heterocyclic moieties for their anticancer activities. Eur J Med Chem 125:143–189. https://doi.org/10.1016/j.ejmech.2016.09.023

    Article  CAS  PubMed  Google Scholar 

  3. Xiao ZP, Wang XD, Wang PF, Zhou Y, Zhang JW, Zhang L, Zhou J, Zhou SS, Ouyang H, Lin XY, Mustapa M, Reyinbaike A, Zhum HL (2014) Design, synthesis, and evaluation of novel fluoroquinolone–flavonoid hybrids as potent antibiotics against drug-resistant microorganisms. Eur J Med Chem 80:92–100. https://doi.org/10.1016/j.ejmech.2014.04.037

    Article  CAS  PubMed  Google Scholar 

  4. Ozkay Y, Incesu Z, Onder NI, Tunali Y, Karaca H, Isikdag I, Ucucu Ü (2013) Antimicrobial and anticancer effects of some 2-(substitutedsulfanyl)-N-(5-methyl-isoxazol-3-yl) acetamide derivatives. Med Chem Res 22:211–218. https://doi.org/10.1007/s00044-012-0021-2

    Article  CAS  Google Scholar 

  5. Bartlett RR, Schleyerbach R (1985) Immunopharmacological profile of a novel isoxazol derivative, HWA 486, with potential antirheumatic activity–I. Disease modifying action on adjuvant arthritis of the rat. Int J Immunopharmacol 7:7–18. https://doi.org/10.1016/0192-0561(85)90003-7

    Article  CAS  PubMed  Google Scholar 

  6. Murata M, Hasegawa K, Kanazawa I, Japan Zonisamide on PD Study Group (2007) Zonisamide improves motor function in Parkinson disease: a randomized, double-blind study. Neurology 68:45–50. https://doi.org/10.1212/01.wnl.0000250236.75053.16

    Article  CAS  PubMed  Google Scholar 

  7. Sahu JK, Ganguly S, Kaushik A (2013) Triazoles: a valuable insight into recent developments and biological activities. Chin J Nat Med 11:456–465. https://doi.org/10.1016/S1875-5364(13)60084-9

    Article  CAS  PubMed  Google Scholar 

  8. Müller-Schiffmann A, Sticht H, Korth C (2012) Hybrid compounds: from simple combinations to nanomachines. BioDrugs 26:21–31. https://doi.org/10.2165/11597630-000000000-00000

    Article  PubMed  Google Scholar 

  9. Mao J, Yuan H, Wang Y, Wan B, Pak D, He R, Franzblau SG (2010) Synthesis and antituberculosis activity of novel mefloquine-isoxazole carboxylic esters as prodrugs. Bioorg Med Chem 20:1263–1268. https://doi.org/10.1016/j.bmcl.2009.11.105

    Article  CAS  Google Scholar 

  10. Shekhar AC, Lingaiah BPV, Rao PS, Narsaiah B, Allanki AD, Sijwali PS (2015) Design, synthesis and biological evaluation of novel fluorinated heterocyclic hybrid molecules based on triazole & quinoxaline scaffolds lead to highly potent antimalarials and antibacterials. Lett Drug Des Discov 12:393–407. https://doi.org/10.2174/1570180812666141111235301

    Article  CAS  Google Scholar 

  11. Lokanatha Rai KM, Linganna N, Hassner A, Anjanamurthy C (1992) A convenient method for the generation of nitrile oxide and its application to the synthesis of 2-isoxazolines. Org Prep Proc Int 24:91–93. https://doi.org/10.1080/00304949209356711

    Article  Google Scholar 

  12. Kim JN, Ryu EK (1990) A convenient synthesis of nitrile oxides from aldoximes by 1-chlorobenzotriazole. Synth Commun 20:1373–1377. https://doi.org/10.1080/00397919008052851

    Article  CAS  Google Scholar 

  13. Hassner A, Lokanatha Rai KM (1989) A new method for the generation of nitrile oxides and its application to the synthesis of 2-isoxazolines. Synthesis 1:57–59. https://doi.org/10.1055/s-1989-27152

    Article  Google Scholar 

  14. Grundmann C, Dean JM (1965) Nitrile oxides. V. Stable aromatic nitrile oxides. J Org Chem 30:2809–2812. https://doi.org/10.1021/jo01019a074

    Article  CAS  Google Scholar 

  15. Himo F, Lovell T, Hilgraf R, Rostovtsev VV, Noodleman L, Sharpless KB, Fokin VV (2005) Copper (I)-catalized synthesis of azoles. DFT study predicts unprecedent reactivity and intermediates. J Am Chem Soc 127:210–216. https://doi.org/10.1021/ja0471525

    Article  CAS  PubMed  Google Scholar 

  16. Hein JE, Fokin VV (2010) Copper-catalyzed azide-alkyne cycloaddition (CuAAC) and beyond: new reactivity of Copper (I) acetylides. Chem Soc Rev 39:1302–1315. https://doi.org/10.1039/b904091a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Del Giudice MR, Borioni A, Mustazza C, Gatta F (1997) Synthesis of 9-amino-, 9-aminomethyl-1,2,3,4-tetrahydro-and 1,2,3,4,5,6,7,8-octahydroacridine derivatives. J Heterocyclic Chem 34:1661–1667. https://doi.org/10.1002/jhet.5570340604

    Article  Google Scholar 

  18. Ermolaeva VG, Yashunskii VG, Polezhaeva AI, Mashkovskii MD (1968) Synthesis and pharmacological properties of certain derivatives of octahydroacridines. Pharm Chem J 2:310–312. https://doi.org/10.1007/BF00759725

    Article  Google Scholar 

  19. Canas-Rodriguez A, Canas RG, Mateo-Bernardo A (1987) Tricyclic inhibitors of gastric acid secretion. Part V. Octahydroacridines. An Quim Ser C 83:24–27

    CAS  Google Scholar 

  20. Mayekar NV, Nayak SK, Chattopadhyay S (2004) Two convenient one-pot strategies for the synthesis of octahydroacridines. Synth Commun 34:3111–3119. https://doi.org/10.1081/SCC-200028567

    Article  CAS  Google Scholar 

  21. Laschat S, Noe R, Riedel M (1993) Novel (Imino-η6-arene)chromium complexes and their diastereoselective intramolecular hetero-Diels-Alder reactions. Organometallics 12:3738–3742. https://doi.org/10.18419/opus-6985

    Article  CAS  Google Scholar 

  22. Schulte JL, Laschat S, Kotila S, Hecht J, Frölich R, Wibbeling B (1996) Synthesis of η6-(octahydroacridine)-chromiumtricarbonyl complexes with nonpolar tails via molecular sieves-catalized cyclization of N-arylimines and subsequent diastereoselective complexation. Heterocycles 43:2713–2724. https://doi.org/10.3987/COM-96-7622

    Article  CAS  Google Scholar 

  23. Acelas M, Romero Bohórquez AR, Kouznetsov VV (2017) Highly diastereoselective synthesis of new trans-fused octahydroacridines via intramolecular cationic imino Diels-Alder reaction of N-protected anilines and citronellal or citronella essential oil. Synthesis 49:2153–2162. https://doi.org/10.1055/s-0036-1588713

    Article  CAS  Google Scholar 

  24. Rodríguez YA, Gutiérrez M, Ramírez D, Alzate-Morales J, Bernal CC, Güiza FM, Romero Bohórquez AR (2016) Novel N-allyl/propargyl tetrahydroquinolines: synthesis via three-component cationic imino Diels-Alder reaction, binding prediction and evaluation as cholinesterase inhibitors. Chem Biol Drug Des 88:498–510. https://doi.org/10.1111/cbdd.12773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Van Berkel GJ, McLuckey SA, Glish GL (1992) Electrochemical origin of radical cations observed in electrospray ionization mass spectra. Anal Chem 64:1586–1593. https://doi.org/10.1021/ac00038a015

    Article  Google Scholar 

  26. Crotti AEM, Vessecchi R, Callegari JLC, Lopes NP (2006) Electrospray ionization mass spectrometry: chemical processes involved in the ion formation from low molecular weight organic compounds. Quím Nova 29:287–292. https://doi.org/10.1590/S0100-40422006000200020

    Article  CAS  Google Scholar 

  27. Zenobi R, Knochenmuss R (1998) Ion formation in MALDI mass spectrometry. Mass Spectrom Rev 17:337–366. https://doi.org/10.1002/(SICI)1098-2787(1998)17:5%3c337:AID-MAS2%3e3.0.CO;2-S

    Article  CAS  Google Scholar 

  28. Stephen O, Nwaukwa MK, Philip MK (1989) Ring chlorination of benzenoid compounds using calcium hypochlorite [Ca(OCl)2]. Synth Commun 19:799–804. https://doi.org/10.1080/00397918908050996

    Article  Google Scholar 

  29. Easton CJ, Hughes CM, Tiekink ERT, Lubin CE, Savage GP, Simpson GW (1994) Reversal of regiochemistry in the synthesis of isoxazoles by nitrile oxide cycloadditions. Tetrahedron Lett 35:3589–3592. https://doi.org/10.1016/S0040-4039(00)73248-5

    Article  CAS  Google Scholar 

  30. Colombano G, Albani C, Ottonello G, Ribeiro A, Scarpelli R, Tarozzo G, Daglian J, Jung KM, Piomelli D, Bandiera T (2015) O-(triazolyl)methyl carbamates as a novel and potent class of fatty acid amide hydrolase (FAAH) inhibitors. Chem Med Chem 10:380–395. https://doi.org/10.1002/cmdc.201402374

    Article  CAS  PubMed  Google Scholar 

  31. Shao C, Wang X, Zhang Q, Luo S, Zhao J, Hu Y (2011) Acid-base jointly promoted copper(I)-catalized azide-alkyne cycloaddition. J Org Chem 76:6832–6836. https://doi.org/10.1021/jo200869a

    Article  CAS  PubMed  Google Scholar 

  32. Urankar D, Steinbücher M, Kosjek J, Kosmrlj J (2010) N-(propargyl)diazenecarboxamides for ‘click’ conjugation and their 1,3-dipolar cycloadditions with azidoalkylamines in the presence of Cu(II). Tetrahedron 66:2602–2613. https://doi.org/10.1016/j.tet.2010.02.042

    Article  CAS  Google Scholar 

  33. Jwad RS, Mohammed AI, Shihab MS (2012) Synthesis of 1,2,3-triazoles based on phenacyl azide derivatives via click chemistry. Iraqi J Sci 53:487–494

    Google Scholar 

Download references

Acknowledgements

This work was supported by Patrimonio Autónomo Fondo Nacional de Financiamiento para la Ciencia, la Tecnología y la Innovación, Francisco José de Caldas (Contract RC-0572-2012). We want to thank Laboratorio de Espectrometria de Masas—Parque Tecnológico Guatiguará for data collection. We also wish to acknowledge Prof. Elena E. Stashenko, Research Director CROM-MASS–CENIVAM, Industrial University of Santander, Colombia, for the generous donation and characterization of the EO of citronella.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnold R. Romero Bohórquez.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3218 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acelas, M., Kouznetsov, V.V. & Romero Bohórquez, A.R. Facile and highly diastereo and regioselective synthesis of novel octahydroacridine-isoxazole and octahydroacridine-1,2,3-triazole molecular hybrids from citronella essential oil. Mol Divers 23, 183–193 (2019). https://doi.org/10.1007/s11030-018-9863-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-018-9863-y

Keywords

Navigation