Skip to main content

Advertisement

Log in

New 7-piperazinylquinolones containing (benzo[d]imidazol-2-yl)methyl moiety as potent antibacterial agents

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

A series of 7-piperazinylquinolones containing a (benzo[d]imidazol-2-yl)methyl moiety were designed and synthesized as new antibacterial agents. The antibacterial activity of title compounds was evaluated against Gram-positive (Staphylococcus aureus, Staphylococcus epidermidis and Bacillus subtilis) and Gram-negative (Escherichia coli, Pseudomonas aeruginosa and Klebsiella pneumonia) microorganisms. Among the tested compounds, the N1-cyclopropyl derivative 4a showed the highest activity against S. aureus, S. epidermidis, B. subtilis and E. coli (\(\text {MIC} = 0.097\) \(\upmu \)g/mL), being 2–4 times more potent than reference drug norfloxacin. A structure-activity relationship study demonstrated that the effect of the nitro group on the benzimidazole ring depends on the pattern of substitutions on the piperazinylquinolone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Castro W, Navarro M, Biot C (2013) Medicinal potential of ciprofloxacin and its derivatives. Future Med Chem 5:81–96. https://doi.org/10.4155/fmc.12.181

    Article  CAS  PubMed  Google Scholar 

  2. Willmott CJ, Critchlow SE, Eperon IC, Maxwell A (1994) The complex of DNA gyrase and quinolone drugs with DNA forms a barrier to transcription by RNA polymerase. J Mol Biol 242:351–363. https://doi.org/10.1006/jmbi.1994.1586

    Article  CAS  PubMed  Google Scholar 

  3. Drlica K, Zhao X (1997) DNA gyrase, topoisomerase IV, and the 4-quinolones. Microbiol Mol Biol Rev 61:377–392

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Chen AY, Liu LF (1994) DNA topoisomerases: essential enzymes and lethal targets. Annu Rev Pharmacol Toxicol 34:191–218. https://doi.org/10.1146/annurev.pa.34.040194.001203

    Article  CAS  PubMed  Google Scholar 

  5. Gootz TD, Barrett JF, Sutcliffe JA (1990) Inhibitory effects of quinolone antibacterial agents on eucaryotic topoisomerases and related test systems. Antimicrob Agents Chemother 34:8–12. https://doi.org/10.1128/AAC.34.1.8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Emami S, Shafiee A, Foroumadi A (2005) Quinolones: recent structural and clinical developments. Iran J Pharm Res 3:123–136

    Google Scholar 

  7. Koga H, Itoh A, Murayama S, Suzue S, Irikura T (1980) Structure-activity relationships of antibacterial 6,7- and 7,8-disubstituted 1-alkyl-1,4-dihydro-4-oxoquinoline-3-carboxylic acids. J Med Chem 23:1358–1363. https://doi.org/10.1021/jm00186a014

    Article  CAS  PubMed  Google Scholar 

  8. Emami S, Shafiee A, Foroumadi A (2006) Structural features of new quinolones and relationship to antibacterial activity against Gram-positive bacteria. Mini-Rev Med Chem 6:375–386. https://doi.org/10.2174/138955706776361493

    Article  CAS  PubMed  Google Scholar 

  9. Piddock LJV (1999) Mechanisms of fluoroquinolone resistance: an update 1994–1998. Drugs 58:11–18. https://doi.org/10.2165/00003495-199958002-00003

    Article  CAS  PubMed  Google Scholar 

  10. Appelbaum PC, Hunter PA (2000) The fluoroquinolone antibacterials: past, present and future perspectives. Int J Antimicrob Agents 16:5–15. https://doi.org/10.1016/S0924-8579(00)00192-8

    Article  CAS  PubMed  Google Scholar 

  11. Emami S (2010) New quinolones with potential anti-MRSA activity. Nova Science Publishers Inc, New York

    Google Scholar 

  12. Nakaminami H, Sato-Nakaminami K, Noguchi N (2014) A novel GyrB mutation in meticillin-resistant Staphylococcus aureus (MRSA) confers a high level of resistance to third-generation quinolones. Int J Antimicrob Agents 43:478–479. https://doi.org/10.1016/j.ijantimicag.2014.02.002

    Article  CAS  PubMed  Google Scholar 

  13. Wagman AS, Wentland MP (2007) Quinolone antibacterial agents. In: Taylor JB, Triggle DJ (eds) Comprehensive medicinal chemistry II, vol 7. Elsevier LTD, Oxford, pp 567–596

    Chapter  Google Scholar 

  14. Seenaiah D, Reddy PR, Reddy GM, Padmaja A, Padmavathi V, Krishna NS (2014) Synthesis, antimicrobial and cytotoxic activities of pyrimidinyl benzoxazole, benzothiazole and benzimidazole. Eur J Med Chem 77:1–7. https://doi.org/10.1016/j.ejmech.2014.02.050

    Article  CAS  PubMed  Google Scholar 

  15. Hosamani KM, Seetharamareddy HR, Keri RS, Hanamanthagouda MS, Moloney MG (2009) Microwave assisted, one-pot synthesis of 5-nitro- 2-aryl substituted-1H-benzimidazole libraries: screening in vitro for antimicrobial activity. J Enzyme Inhib Med Chem 24:1095–1100. https://doi.org/10.1080/14756360802632716

    Article  CAS  PubMed  Google Scholar 

  16. Zhang HZ, Damu GL, Cai GX, Zhou CH (2013) Design, synthesis and antimicrobial evaluation of novel benzimidazole type of Fluconazole analogues and their synergistic effects with Chloromycin, Norfloxacin and Fluconazole. Eur J Med Chem 64:329–344. https://doi.org/10.1016/j.ejmech.2013.03.049

    Article  CAS  PubMed  Google Scholar 

  17. Foroumadi A, Emami S, Hassanzadeh A, Rajaee M, Sokhanvar K, Moshafi MH, Shafiee A (2005) Synthesis and antibacterial activity of N-(5-benzylthio-1,3,4-thiadiazol-2-yl) and N-(5-benzylsulfonyl-1,3,4-thiadiazol-2-yl)piperazinyl quinolone derivatives. Bioorg Med Chem Lett 15:4488–4492. https://doi.org/10.1016/j.bmcl.2005.07.016

    Article  CAS  PubMed  Google Scholar 

  18. Foroumadi A, Firoozpour L, Emami S, Mansouri S, Ebrahimabadi AH, Asadipour A, Amini M, Saeid-Adeli N, Shafiee A (2007) Synthesis and antibacterial activity of N-[5-(chlorobenzylthio)-1,3,4-thiadiazol-2-yl] piperazinyl quinolone derivatives. Arch Pharm Res 30:138–145. https://doi.org/10.1007/BF02977685

    Article  CAS  PubMed  Google Scholar 

  19. Foroumadi A, Firoozpour L, Nematollahi N, Ebrahimabadi AH, Emami S, Moshafi MH, Asadipour A, Shafiee A (2007) Synthesis of new fluoroquinolones containing a N-[5-(fluorobenzylthio)-1,3,4-thiadiazol-2-yl]piperazine moiety. Asian J Chem 19:4547–4552

    CAS  Google Scholar 

  20. Foroumadi A, Emami S, Mehni M, Moshafi MH, Shafiee A (2005) Synthesis and antibacterial activity of N-[2-(5-bromothiophen-2-yl)-2-oxoethyl] and N-[(2–5-bromothiophen-2-yl)-2-oximinoethyl] derivatives of piperazinyl quinolones. Bioorg Med Chem Lett 15:4536–4539. https://doi.org/10.1016/j.bmcl.2005.07.005

    Article  CAS  PubMed  Google Scholar 

  21. Foroumadi A, Oboudiat M, Emami S, Karimollah A, Saghaee L, Moshafi MH, Shafiee A (2006) Synthesis and antibacterial activity of N-[2-[5-(methylthio)thiophen-2-yl]-2-oxoethyl] and N-[2-[5-(methylthio)thiophen-2-yl]-2-(oxyimino)ethyl]piperazinylquinolone derivatives. Bioorg Med Chem 14:3421–3427. https://doi.org/10.1016/j.bmc.2005.12.058

    Article  CAS  PubMed  Google Scholar 

  22. Letafat B, Emami S, Mohammadhosseini N, Faramarzi MA, Samadi N, Shafiee A, Foroumadi A (2007) Synthesis and antibacterial activity of new N-[2-(thiophen-3-yl)ethyl] piperazinyl quinolones. Chem Pharm Bull (Tokyo) 55:894–898. https://doi.org/10.1248/cpb.55.894

    Article  CAS  Google Scholar 

  23. Mohammadhosseini N, Alipanahi Z, Alipour E, Emami S, Faramarzi MA, Samadi N, Khoshnevis N, Shafiee A, Foroumadi A (2012) Synthesis and antibacterial activity of novel levofloxacin derivatives containing a substituted thienylethyl moiety. Daru J Pharm Sci 20:16; https://doi.org/10.1186/2008-2231-20-16

    Article  CAS  Google Scholar 

  24. Shafiee A, Haddad Zahmatkesh M, Mohammadhosseini N, Khalafy J, Emami S, Moshafi MH, Sorkhi M, Foroumadi A (2008) Synthesis and in-vitro antibacterial activity of N-piperazinyl quinolone derivatives with 5-chloro-2-thienyl group. Daru 16:189–195

    CAS  Google Scholar 

  25. Foroumadi A, Mohammadhosseini N, Emami S, Letafat B, Faramarzi MA, Samadi N, Shafiee A (2007) Synthesis and antibacterial activity of new 7-piperazinyl-quinolones containing a functionalized 2-(furan-3-yl)ethyl moiety. Arch Pharm 340:47–52. https://doi.org/10.1002/ardp.200600169

    Article  CAS  Google Scholar 

  26. Emami S, Foroumadi A, Faramarzi MA, Samadi N (2008) Synthesis and antibacterial activity of quinolone-based compounds containing a coumarin moiety. Arch Pharm 341:42–48. https://doi.org/10.1002/ardp.200700090

    Article  CAS  Google Scholar 

  27. Emami S, Foroumadi A, Samadi N, Faramarzi MA, Rajabalian S (2009) Conformationally constrained analogs of N-substituted piperazinylquinolones: synthesis and antibacterial activity of N-(2,3-dihydro-4-hydroxyimino-4H-1-benzopyran-3-yl)-piperazinylquinolones. Arch Pharm 342:405–411. https://doi.org/10.1002/ardp.200800182

    Article  CAS  Google Scholar 

  28. Emami S, Ghafouri E, Faramarzi MA, Samadi N, Irannejad H, Foroumadi A (2013) Mannich bases of 7-piperazinylquinolones and kojic acid derivatives: synthesis, in vitro antibacterial activity and in silico study. Eur J Med Chem 68:185–191. https://doi.org/10.1016/j.ejmech.2013.07.032

    Article  CAS  PubMed  Google Scholar 

  29. Baron EJ, Finegold SM (2002) Bailey Scott’s diagnostic microbiology, 11th edn. The C. V. Mosby Company, St. Louis, pp 235–236

    Google Scholar 

  30. Li Q, Xing J, Cheng H, Wang H, Wang J, Wang S, Zhou J, Zhang H (2015) Design, synthesis, antibacterial evaluation and docking study of novel 2-hydroxy-3-(nitroimidazolyl)-propyl-derived quinolone. Chem Biol Drug Des 85:79–90. https://doi.org/10.1111/cbdd.12395

    Article  CAS  PubMed  Google Scholar 

  31. Sheng C, Che X, Wang W, Wang S, Cao Y, Yao J, Miao Z, Zhang W (2011) Design and synthesis of antifungal benzoheterocyclic derivatives by scaffold hopping. Eur J Med Chem 46:1706–1712. https://doi.org/10.1016/j.ejmech.2011.01.075

    Article  CAS  PubMed  Google Scholar 

  32. Foroumadi A, Ashraf-Askari R, Moshafi MH, Emami S, Zeynali A (2003) Synthesis and in vitro antibacterial activity of N-[5-(5-nitro-2-furyl)-1,3,4-thiadiazole-2-yl] piperazinyl quinolone derivatives. Pharmazie 58:432–433

    CAS  PubMed  Google Scholar 

  33. Foroumadi A, Mansouri S, Emami S, Mirzaei J, Sorkhi M, Saeid-Adeli N, Shafiee A (2006) Synthesis and antibacterial activity of nitroaryl thiadiazole-levofloxacin hybrids. Arch Pharm 339:621–624. https://doi.org/10.1002/ardp.200600108

    Article  CAS  Google Scholar 

  34. Jazayeri S, Moshafi MH, Firoozpour L, Emami S, Rajabalian S, Haddad M, Pahlavanzadeh F, Esnaashari M, Shafiee A, Foroumadi A (2009) Synthesis and antibacterial activity of nitroaryl thiadiazole-gatifloxacin hybrids. Eur J Med Chem 44:1205–1209. https://doi.org/10.1016/j.ejmech.2008.09.012

    Article  CAS  PubMed  Google Scholar 

  35. Emami S, Shahrokhirad N, Foroumadi A, Faramarzi MA, Samadi N, Soltani-Ghofrani N (2013) 7-Piperazinylquinolones with methylene-bridged nitrofuran scaffold as new antibacterial agents. Med Chem Res 22:5940–5947. https://doi.org/10.1007/s00044-013-0581-9

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant (No. 833) from the Research Council of Mazandaran University of Medical Sciences, Sari, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Emami.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 4061 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arab, HA., Faramarzi, M.A., Samadi, N. et al. New 7-piperazinylquinolones containing (benzo[d]imidazol-2-yl)methyl moiety as potent antibacterial agents. Mol Divers 22, 815–825 (2018). https://doi.org/10.1007/s11030-018-9834-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-018-9834-3

Keywords

Navigation