Skip to main content
Log in

\(\hbox {Re}_{2}\hbox {O}_{7}\)-catalyzed formal [3 + 2] cycloaddition for diverse naphtho[1,2-b]furan-3-carboxamides and their biological evaluation

  • Full-Length Paper
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Diverse naphtho[1,2-b]furan-3-carboxamide derivatives 12a12q were synthesized in high yield via the novel \(\hbox {Re}_{2}\hbox {O}_{7}\)-catalyzed formal [3\(+\)2] cycloaddition of 1,4-naphthoquinones with \(\beta \)-ketoamides as the key step. This methodology offers several advantages, such as environmentally benign character, the use of a mild catalyst, high yields, and ease of handling. The synthesized compounds were screened for their tyrosinase inhibitory, antioxidant, and antibacterial activities. The results showed that compound 12c exhibited excellent tyrosinase inhibitory activity with an \(\hbox {IC}_{50}\) of \(13.48\,\upmu \hbox {g/mL}\), which is comparable to that of kojic acid (\(\hbox {IC}_{50 }= 19.45\,\upmu \hbox {g/mL}\)). Compounds 12a, 12b, and 12i displayed moderate antioxidant activities in a DPPH assay. Compound 12m showed good activity against S. aureus (\(\hbox {MIC} = 16\,\upmu \hbox {g/mL}\)), and compound 12p was found to be active against E. coli (\(\hbox {MIC} = 16\,\upmu \hbox {g/mL}\)).

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2

Similar content being viewed by others

References

  1. Uchuskin MG, Shcherbinin VA, Butin AV (2014) Synthesis and transformations of naphtho[2,3-\(b\)]furans. Chem Heterocycl Compd 50:619–633. doi:10.1007/s10593-014-1515-2

    Article  CAS  Google Scholar 

  2. Kwiecień H, Śmist M, Kowalewska M (2012) Recent development on the synthesis of benzo[\(b\)]- and naphtho[\(b\)]furans: a review. Curr Org Synth 9:529–560. doi:10.2174/157017912802651393

    Article  Google Scholar 

  3. Veena K, Ramaiah M, Vanita GK, Avinash TS, Vaidya VP (2011) Synthesis of symmetrical and asymmetrical azines encompassing naphtho[2,1-\(b\)]furan by a novel approach. E-J Chem 8:354–360. doi:10.1155/2011/784932

    Article  CAS  Google Scholar 

  4. Lumb J-P, Choong KC, Trauner D (2008) ortho-Quinone methides from para-quinones: total synthesis of rubioncolin B. J Am Chem Soc 130:9230–9231. doi:10.1021/ja803498r

    Article  PubMed  CAS  Google Scholar 

  5. Qiao YF, Takeya K, Itokawa H, Iitaka Y (1990) Three novel naphthohydroquinone dimers from Rubia oncotricha. Chem Pharm Bull 38:2896–2898. doi:10.1248/cpb.38.2896

    Article  CAS  Google Scholar 

  6. Chung MI, Jou SJ, Cheng TH, Lin CN, Ko FN, Teng CM (1994) Antiplatelet constituents of formosan Rubia akane. J Nat Prod 57:313–316. doi:10.1021/np50104a020

    Article  PubMed  CAS  Google Scholar 

  7. Itokawa H, Qiao Y, Takeya K (1991) Anthraquinones, naphthoquinones and naphthohydroquinones from Rubia oncotricha. Phytochemistry 30:637–640. doi:10.1016/0031-9422(91)83742-4

    Article  CAS  Google Scholar 

  8. Sastry MNV, Claessens S, Habonimana P, De Kimpe N (2010) Synthesis of the natural products 3-hydroxymollugin and 3-methoxymollugin. J Org Chem 75:2274–2280. doi:10.1021/jo100024b

    Article  PubMed  CAS  Google Scholar 

  9. Lumb J-P, Trauner D (2005) Biomimetic synthesis and structure elucidation of rubicordifolin, a cytotoxic natural product from Rubia cordifolia. J Am Chem Soc 127:2870–2871. doi:10.1021/ja042375g

    Article  PubMed  CAS  Google Scholar 

  10. Itokawa H, Ibraheim ZZ, Qiao YF, Takeya K (1993) Anthraquinones, naphthohydroquinones and naphthohydroquinone dimers from Rubia cordifolia and their cytotoxic activity. Chem Pharm Bull 41:1869–1872. doi:10.1248/cpb.41.1869

    Article  PubMed  CAS  Google Scholar 

  11. Lumb J-P, Krinsky JL, Trauner D (2010) Theoretical investigation of the rubicordifolin cascade. Org Lett 12:5162–5165. doi:10.1021/ol102157d

    Article  PubMed  CAS  Google Scholar 

  12. Son JK, Jung SJ, Jung JH, Fang Z, Lee CS, Seo CS, Moon DC, Min BS, Kim MR, Woo MH (2008) Anticancer constituents from the roots of \(Rubia cordifolia\) L. Chem Pharm Bull 56:213–216. doi:10.1248/cpb.56.213

    Article  PubMed  CAS  Google Scholar 

  13. Singh P, Khandelwal P, Hara N, Asai T, Fujimoto Y (2008) Radermachol and naphthoquinone derivatives from Tecomella undulata: complete \(^{1}\text{ H }\) and \(^{13}\text{ C }\) NMR assignments of radermachol with the aid of computational \(^{13}\)C shift prediction. Indian J Chem, Sect B: Org Chem Incl Med Chem 47B:1865–1870

    CAS  Google Scholar 

  14. Joshi BS, Gawad DH, Pelletier SW, Kartha G, Bhandary K (1984) The structure of radermachol, an unusual pigment from Radermachera xylocarpa K. Schum. Tetrahedron Lett 25:5847–5850. doi:10.1016/S0040-4039(01)81701-9

    Article  CAS  Google Scholar 

  15. Buccini M, Piggott MJ (2014) A four-step total synthesis of radermachol. Org Lett 16:2490–2493. doi:10.1021/ol500862w

    Article  PubMed  CAS  Google Scholar 

  16. Hauser FM, Yin H (2000) A new route to benzo[4,5]cyclohepta[1,2-\(b\)]naphthalenes: synthesis of radermachol. Org Lett 2:1045–1047. doi:10.1021/ol0055869

    Article  PubMed  CAS  Google Scholar 

  17. Joshi BS, Jiang Q, Rho T, Pelletier SW (1994) The synthesis of radermachol. J Org Chem 59:8220–8232. doi:10.1021/jo00105a046

    Article  CAS  Google Scholar 

  18. Jiang Q, Joshi BS, Pelletier SW (1991) The total synthesis of radermachol. Tetrahedron Lett 32:5283–5286. doi:10.1016/S0040-4039(00)92365-7

    Article  CAS  Google Scholar 

  19. Kim K-J, Lee JS, Kwak M-K, Choi HG, Yong CS, Kim J-A, Lee YR, Lyoo WS, Park Y-J (2009) Anti-inflammatory action of mollugin and its synthetic derivatives in HT-29 human colonic epithelial cells is mediated through inhibition of NF-\(\kappa \)B activation. Eur J Pharmacol 622:52–57. doi:10.1016/j.ejphar.2009.09.008

    Article  PubMed  CAS  Google Scholar 

  20. Xia L, Idhayadhulla A, Lee YR, Kim SH, Wee Y-J (2014) Antioxidant and antibacterial evaluation of synthetic furomollugin and its diverse analogs. Med Chem Res 23:3528–3538. doi:10.1007/s00044-014-0929-9

    Article  CAS  Google Scholar 

  21. Xia L, Idhayadhulla A, Lee YR, Wee Y-J, Kim SH (2014) Anti-tyrosinase, antioxidant, and antibacterial activities of novel 5-hydroxy-4-acetyl-2,3-dihydronaphtho[1,2-\(b\)]furans. Eur J Med Chem 86:605–612. doi:10.1016/j.ejmech.2014.09.025

    Article  PubMed  CAS  Google Scholar 

  22. Xia L, Lee YR (2013) A novel and efficient synthesis of diverse dihydronaphtho[1,2-\(b\)]furans using the ceric ammonium nitrate-catalyzed formal [3 + 2] cycloaddition of 1,4-naphthoquinones to olefins and its application to furomollugin. Org Biomol Chem 11:6097–6107. doi:10.1039/c3ob40977e

    Article  PubMed  CAS  Google Scholar 

  23. Goldfarb DS (2009) Method using lifespan-altering compounds for altering the lifespan of eukaryotic organisms, and screening for such compounds. U.S. Patent Application Publication US 20090163545 A1

  24. Zhao B, Lu X (2006) Cationic palladium(II)-catalyzed addition of arylboronic acids to nitriles. One-step synthesis of benzofurans from phenoxyacetonitriles. Org Lett 8:5987–5990. doi:10.1021/ol062438v

    Article  PubMed  CAS  Google Scholar 

  25. Willis MC, Taylor D, Gillmore AT (2006) Palladium-catalyzed intramolecular enolate \(O\)-arylation and thio-enolate \(S\)-arylation: synthesis of benzo[\(b\)]furans and benzo[\(b\)]thiophenes. Tetrahedron 62:11513–11520. doi:10.1016/j.tet.2006.05.004

    Article  CAS  Google Scholar 

  26. Churruca F, SanMartin R, Tellitu I, Dominguez E (2005) A new, expeditious entry to the benzophenanthrofuran framework by a Pd-catalyzed \(C\)-arylation/PIFA-mediated oxidative coupling sequence. Eur J Org Chem 12:2481–2490. doi:10.1002/ejoc.200400856

    Article  CAS  Google Scholar 

  27. Bellur E, Langer P (2005) Synthesis of benzofurans with remote bromide functionality by domino “ring-cleavage-deprotection-cyclization” reactions of 2-alkylidenetetrahydrofurans with boron tribromide. J Org Chem 70:7686–7693. doi:10.1021/jo051079z

    Article  PubMed  CAS  Google Scholar 

  28. Zhang H, Ferreira EM, Stoltz BM (2004) Pd-catalyzed cyclizations: direct oxidative heck cyclizations: intramolecular Fujiwara-Moritani arylations for the synthesis of functionalized benzofurans and dihydrobenzofurans. Angew Chem Int Ed 43:6144–6148. doi:10.1002/anie.200461294

    Article  CAS  Google Scholar 

  29. Xia L, Lee YR (2014) Regioselective synthesis of novel and diverse naphtho[1,2-\(b\)]furan-3-carboxamides and benzofuran-3-carboxamides by cascade formal [3 + 2] cycloaddition. RSC Adv 4:36905–36916. doi:10.1039/C4RA07862D

    Article  CAS  Google Scholar 

  30. Mishra K, Basavegowda N, Lee YR (2015) Biosynthesis of Fe, Pd, and Fe-Pd bimetallic nanoparticles and their application as recyclable catalysts for [3 + 2] cycloaddition reaction: a comparative approach. Catal Sci Technol 5:2612–2621. doi:10.1039/C5CY00099H

    Article  CAS  Google Scholar 

  31. Tsai P-C, Chu C-L, Fu Y-S, Tseng C-H, Chen Y-L, Chang L-S, Lin S-R (2014) Naphtho[1,2-\(b\)]furan-4,5-dione inhibits MDA-MB-231 cell migration and invasion by suppressing Src-mediated signaling pathways. Mol Cell Biochem 387:101–111. doi:10.1007/s11010-013-1875-4

    Article  PubMed  CAS  Google Scholar 

  32. Gaikwad SS, Suryawanshi VS, Lohar KS, Jadhav DV, Shinde ND (2012) Synthesis and biological activity of some 3,4-dihydro-4-(4-substituted aryl)-6-(naphtho[2,1\(-b\)]furan-2-yl-pyrimidin-2(1\(H)\)-one derivatives. J Chem 9:175–180. doi:10.1155/2012/258672

    CAS  Google Scholar 

  33. Abd El-Wahab AHF, Al-Fifi ZIA, Bedair AH, Ali FM, Halawa AHA, El-Agrody AM (2011) Synthesis, reactions and biological evaluation of some new naphtho[2,1-\(b\)]furan derivatives bearing a pyrazole nucleus. Molecules 16:307–318. doi:10.3390/molecules16010307

    Article  CAS  Google Scholar 

  34. Badr MZA, El-Dean AMK, Moustafa OS, Zaki RM (2006) Synthesis and biological study of some new naphtho[2,1-\(b\)]furan and related heterocyclic systems. J Chem Res 11:748–752. doi:10.3184/030823406779173433

    Article  Google Scholar 

  35. Hofnung M, Quillardet P, Michel V, Touati E (2002) Genotoxicity of 2-nitro-7-methoxy-naphtho[2,1-\(b\)]furan (R7000): a case study with some considerations on nitrofurantoin and nifuroxazide. Res Microbiol 153:427–434. doi:10.1016/S0923-2508(02)01354-2

    Article  PubMed  CAS  Google Scholar 

  36. Barclay LRC, Edwards CD, Mukai K, Egawa Y, Nishi T (1995) Chain-breaking naphtholic antioxidants: antioxidant activities of a polyalkylbenzochromanol, a polyalkylbenzochromenol, and 2,3-dihydro-5-hydroxy-2,2,4-trimethylnaphtho[1,2-\(b\)]furan compared to an \(\alpha \)-tocopherol model in sodium dodecyl sulfate micelles. J Org Chem 60:2739–2744. doi:10.1021/jo00114a022

    Article  CAS  Google Scholar 

  37. Xia L, Lee YR (2014) Regioselective synthesis of highly functionalized furans through the \(\text{ Ru }^{II}\)-catalyzed [3+2] cycloaddition of diazodicarbonyl compounds. Eur J Org Chem 2014:3430–3442. doi:10.1002/ejoc.201402067

    Article  CAS  Google Scholar 

  38. Xia L, Cai H, Lee YR (2014) Catalyst-controlled regio- and stereoselective synthesis of diverse 12\(H\)-6,12-methanodibenzo[\(d\),\(g\)][1,3]dioxocines. Org Biomol Chem 12:4386–4396. doi:10.1039/C4OB00691G0

    Article  PubMed  CAS  Google Scholar 

  39. Xia L, Somai Magar KB, Lee YR (2014) Synthesis of novel and diverse naphtho[1,2-\(b\)]furans by phosphine-catalyzed [3+2] annulation of activated 1,4-naphthoquinones and acetylenecarboxylates. Mol Divers 19:55–66. doi:10.1007/s11030-014-9555-1

    Article  PubMed  CAS  Google Scholar 

  40. Xia L, Lee YR (2013) New synthetic approaches to naturally occurring and unnatural pyranoflavones. Helv Chim Acta 96:644–650. doi:10.1002/hlca.201200278

    Article  CAS  Google Scholar 

  41. Xia L, Lee YR (2013) Efficient one-pot synthesis of multi-substituted dihydrofurans by ruthenium(II)-catalyzed [3+2] cycloaddition of cyclic or acyclic diazodicarbonyl compounds with olefins. Adv Synth Catal 355:2361–2374. doi:10.1002/adsc.201300245

    Article  CAS  Google Scholar 

  42. Xia L, Lee YR (2013) Efficient one-step synthesis of pyrrolo[3,4-\(c\)]quinoline-1,3-dione derivatives by organocatalytic cascade reactions of isatins and \(\beta \)-ketoamides. Org Biomol Chem 11:5254–5263. doi:10.1039/c3ob40791h

    Article  PubMed  CAS  Google Scholar 

  43. Somai Magar KB, Lee YR (2013) Synthesis of diverse indene derivatives from 1-diazonaphthalen-2(1\(H)\)-ones via thermal cascade reactions. Org Lett 15:4288–4291. doi:10.1021/ol4019908

    Article  PubMed  CAS  Google Scholar 

  44. Xia L, Idhayadhulla A, Lee YR, Kim SH, Wee Y-J (2014) Microwave-assisted synthesis of diverse pyrrolo[3,4-\(c\)]quinoline-1,3-diones and their antibacterial activities. ACS Comb Sci 16:333–341. doi:10.1021/co500002s

    PubMed  CAS  Google Scholar 

  45. Idhayadhulla A, Xia L, Lee YR, Kim SH, Wee Y-J, Lee C-S (2014) Synthesis of novel and diverse mollugin analogues and their antibacterial and antioxidant activities. Bioorg Chem 52:77–82. doi:10.1016/j.bioorg.2013.11.008

    Article  PubMed  CAS  Google Scholar 

  46. Xia L, Idhayadhulla A, Lee YR, Kim SH, Wee Y-J (2014) Synthesis and biological evaluation of diverse tetrahydrobenzofuran-4-ones as potent antibacterial agents. J Ind Eng Chem 22:378–383. doi:10.1016/j.jiec.2014.07.035

    Article  CAS  Google Scholar 

  47. Jacobs J, Claessens S, Mbala BM, Huygen K, De KN (2009) New and highly efficient synthesis of 3-substituted 1-hydroxybenz[\(g\)]isoquinoline-5,10-diones. Tetrahedron 65:1193–1199. doi:10.1016/j.tet.2008.11.070

  48. Miura Y, Maekawa H (1999) Preparation of aryl 1,4-dihydroxy-2-naphthoates. Japanese Kokai Tokkyo Koho, JP 11-171839 A

  49. Brimble MA, Burgess C, Halim R, Petersson M, Ray J (2004) Synthesis of pyrrolo[3,2-\(b\)]benzofurans and pyrrolo[3,2-\(b\)]naphthofurans via addition of a silyloxypyrrole to activated quinones. Tetrahedron 60:5751–5758. doi:10.1016/j.tet.2004.05.008

    Article  CAS  Google Scholar 

  50. Nallagonda R, Rehan M, Ghorai P (2014) Chemoselective \(C\)-benzylation of unprotected anilines with benzyl alcohols using \({\rm Re}_{2}{\rm O}_{7}\) catalyst. J Org Chem 79:2934–2943. doi:10.1021/jo4028598

  51. Lo HC, Han H, D’Souza LJ, Sinha SC, Keinan E (2007) Rhenium(VII) oxide catalyzed heteroacylative ring-opening dimerization of tetrahydrofuran. J Am Chem Soc 129:1246–1253. doi:10.1021/ja0668668

    Article  PubMed  CAS  Google Scholar 

  52. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  PubMed  CAS  Google Scholar 

  53. Chang T-S (2009) An updated review of tyrosinase inhibitors. Int J Mol Sci 10:2440–2475. doi:10.3390/ijms10062440

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Khatib S, Nerya O, Musa R, Tamir S, Peter T, Vaya J (2007) Enhanced substituted resorcinol hydrophobicity augments tyrosinase inhibition potency. J Med Chem 50:2676–2681. doi:10.1021/jm061361d

    Article  PubMed  CAS  Google Scholar 

  55. Battaini G, Monzani E, Casella L, Santagostini L, Pagliarin R (2000) Inhibition of the catecholase activity of biomimetic dinuclear copper complexes by kojic acid. J Biol Inorg Chem 5:262–268. doi:10.1007/s007750050370

    Article  PubMed  CAS  Google Scholar 

  56. Cefarelli G, D’Abrosca B, Fiorentino A, Izzo A, Mastellone C, Pacifico S, Piscopo V (2006) Free-radical-scavenging and antioxidant activities of secondary metabolites from reddened Cv. Annurca apple fruits. J Agric Food Chem 54:803–809. doi:10.1021/jf052632g

    Article  PubMed  CAS  Google Scholar 

  57. Burits M, Bucar F (2000) Antioxidant activity of Nigella sativa essential oil. Phytother Res 14:323–328

    Article  PubMed  CAS  Google Scholar 

  58. Bauer AW, Kirby WM, Sherris JC, Turck M (1966) Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45:493–496

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Nano Material Technology Development Program through the Korean National Research Foundation (NRF) funded by the Korean Ministry of Education, Science, and Technology (2012M3A7B4049675).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Rok Lee.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (doc 13063 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, L., Idhayadhulla, A. & Lee, Y.R. \(\hbox {Re}_{2}\hbox {O}_{7}\)-catalyzed formal [3 + 2] cycloaddition for diverse naphtho[1,2-b]furan-3-carboxamides and their biological evaluation. Mol Divers 20, 17–28 (2016). https://doi.org/10.1007/s11030-015-9630-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-015-9630-2

Keywords

Navigation