Skip to main content

Advertisement

Log in

Antioxidant and antibacterial evaluation of synthetic furomollugin and its diverse analogs

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Diverse furomollugin (3) and its analogs (1122) were synthesized in high yields via ceric ammonium nitrate-catalyzed formal [3 + 2] cycloaddition as a key step. The in vitro antioxidant activities of synthesized compounds were determined by analyzing radical scavenging activities for 1,1-diphenyl-2-picrylhydrazyl (DPPH), nitric oxide, and hydrogen peroxide assays. The results showed that the synthesized furomollugin analogs had effective antioxidant power. Dihydronaphthofurans with 2-alkyoxy or 2-aryl group were the most potent radical scavengers in DPPH assay. Moreover, the antibacterial activities of those compounds were also evaluated and the highly active compounds were selected for further determination of minimal inhibitory concentrations (MICs). Compound 19 (MIC = 2 μg/mL) was found to be highly active against the gram-negative bacteria Escherichia coli (KCTC-1924) than the Ampicillin standard (MIC = 4 μg/mL). Compound 22 (MIC = 0.5 μg/mL) inhibited gram-positive bacteria Staphylococcus aureus (KCTC-1916) growth as effectively as ampicillin (MIC = 0.5 μg/mL).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1

Similar content being viewed by others

References

  • Barclay LRC, Vinqvist MR, Mukai K, Itoh S, Morimoto H (1993) Chain-breaking phenolic antioxidants: steric and electronic effects in polyalkylchromanols, tocopherol analogs, hydroquinones, and superior antioxidants of the polyalkylbenzochromanol and naphthofuran class. J Org Chem 58:7416–7420. doi:10.1021/jo00078a020

    Article  CAS  Google Scholar 

  • Barclay LRC, Edwards CD, Mukai K, Egawa Y, Nishi T (1995) Chain-breaking naphtholic antioxidants: antioxidant activities of a polyalkylbenzochromanol, a polyalkylbenzochromenol, and 2,3-dihydro-5-hydroxy-2,2,4-trimethylnaphtho[1,2-b]furan compared to an α-tocopherol model in sodium dodecyl sulfate micelles. J Org Chem 60:2739–2744. doi:10.1021/jo00114a022

    Article  CAS  Google Scholar 

  • Barclay LRC, Antunes F, Egawa Y, McAllister KL, Mukai K, Nishi T, Vinqvist MR (1997) The efficiency of antioxidants delivered by liposomal transfer. Biochim Biophys Acta Biomembr 1328:1–12. doi:10.1016/s0005-2736(97)00057-6

    Article  CAS  Google Scholar 

  • Bauer AW, Kirby WM, Sherris JC, Turck M (1966) Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45:493–496

    CAS  PubMed  Google Scholar 

  • Brimble MA, Burgess C, Halim R, Petersson M, Ray J (2004) Synthesis of pyrrolo[3,2-b]benzofurans and pyrrolo[3,2-b]naphthofurans via addition of a silyloxypyrrole to activated quinones. Tetrahedron 60:5751–5758. doi:10.1016/j.tet.2004.05.008

    Article  CAS  Google Scholar 

  • Burits M, Bucar F (2000) Antioxidant activity of Nigella sativa essential oil. Phytother Res 14:323–328. doi:10.1002/1099-1573(200008)14:5<323:aid-ptr621>3.0.co;2-q

    Article  CAS  PubMed  Google Scholar 

  • Burton GW, Doba T, Gabe E, Hughes L, Lee FL, Prasad L, Ingold KU (1985) Autoxidation of biological molecules. 4. Maximizing the antioxidant activity of phenols. J Am Chem Soc 107:7053–7065. doi:10.1021/ja00310a049

    Article  CAS  Google Scholar 

  • Cefarelli G, D’Abrosca B, Fiorentino A, Izzo A, Mastellone C, Pacifico S, Piscopo V (2006) Free-radical-scavenging and antioxidant activities of secondary metabolites from reddened cv. Annurca apple fruits. J Agric Food Chem 54:803–809. doi:10.1021/jf052632g

    Article  CAS  PubMed  Google Scholar 

  • Chandrashekhar CH, Latha KP, Vagdevi HM, Vaidya VP (2011) Synthesis and antimicrobial activity of chalcones of naphtho[2,1-b]furan condensed with barbituric acid. Der Pharm Chem 3:365–369

    CAS  Google Scholar 

  • Claessens S, Kesteleyn B, Van Nguyen T, De Kimpe N (2006) Synthesis of mollugin. Tetrahedron 62(35):8419–8424. doi:10.1016/j.tet.2006.06.014

    Article  CAS  Google Scholar 

  • Debnath AK, Hansch C, Kim KH, Martin YC (1993) Mechanistic interpretation of the genotoxicity of nitrofurans (antibacterial agents) using quantitative structure-activity relationships and comparative molecular field analysis. J Med Chem 36:1007–1016. doi:10.1021/jm00060a008

    Article  CAS  PubMed  Google Scholar 

  • Einhorn J, Demerseman P, Royer R, Cavier R, Gayral P (1984) Effect of a substituent in the β position of the heterocycle on the antibacterial and parasiticidal properties of 2-nitronaphtho[2.1-b]furans. Eur J Med Chem Chim Ther 19:405–410

    CAS  Google Scholar 

  • Engler TA, LaTessa KO, Iyengar R, Chai W, Agrios K (1996) Stereoselective syntheses of substituted pterocarpans with anti-HIV activity, and 5-aza-/5-thia-pterocarpan and 2-aryl-2,3-dihydrobenzofuran analogs. Bioorg Med Chem 4:1755–1769. doi:10.1016/0968-0896(96)00192-7

    Article  CAS  PubMed  Google Scholar 

  • Gaggi R, Giovanninetti G, Garuti L (1982) β-Adrenolytic activity of some naphtho[2,1-b]furan derivatives. Farm Ed Sci 37:149–150

    CAS  Google Scholar 

  • Giovanninetti G, Cavrini V, Chiarini A, Garuti L, Mannini-Palenzona A (1974) Substances with antiviral activity. I. Naphtho[2,1-b]furan-1(2H)-one, 1H-benz[e]indene-2,3-dihydro-1-one, and 1H-benz[e]indene-1,3(2H)-dione derivatives. Farm Ed Sci 29:375–385

    CAS  Google Scholar 

  • Habonimana P, Claessens S, De Kimpe N (2006) Efficient syntheses of mollugin. Synlett 2472–2475. doi:10.1055/s-2006-950441

  • Ho L-K, Don M-J, Chen H-C, Yeh S-F, Chen J-M (1996) Inhibition of hepatitis B surface antigen secretion on human hepatoma cells. Components from Rubia cordifolia. J Nat Prod 59:330–333. doi:10.1021/np960200h

    Article  CAS  PubMed  Google Scholar 

  • Hranjec M, Grdisa M, Pavelic K, Boykin DW, Karminski-Zamola G (2003) Synthesis and antitumor evaluation of some new substituted amidino-benzimidazolyl-furyl-phenyl-acrylates and naphtho[2,1-b]furan-carboxylates. Farmaco 58:1319–1324. doi:10.1016/s0014-827x(03)00197-6

    Article  CAS  PubMed  Google Scholar 

  • Inoue K, Shiobara Y, Nayeshiro H, Inouye H, Wilson G, Zenk MH (1984) Quinones and related compounds in higher plants. Part 19. Biosynthesis of anthraquinones and related compounds in Galium mollugo cell suspension cultures. Phytochemistry 23:307–311. doi:10.1016/s0031-9422(00)80323-4

    Article  CAS  Google Scholar 

  • Jacobs J, Claessens S, Mbala BM, Huygen K, De Kimpe N (2009) New and highly efficient synthesis of 3-substituted 1-hydroxybenz[g]isoquinoline-5,10-diones. Tetrahedron 65:1193–1199. doi:10.1016/j.tet.2008.11.070

    Article  CAS  Google Scholar 

  • Jang T-S, Zhang HY, Kim GJ, Kim DW, Min B-S, Kang W, Son KH, Na MK, Lee SH (2012) Bioassay-guided isolation of fatty acid synthase inhibitory diterpenoids from the roots of Salvia miltiorrhiza Bunge. Arch Pharm Res 35:481–486. doi:10.1007/s12272-012-0311-8

    Article  CAS  PubMed  Google Scholar 

  • Kwiecien H, Smist M, Kowalewska M (2012) Recent development on the synthesis of benzo[b]- and naphtho[b]furans: a review. Curr Org Synth 9:529–560. doi:10.2174/157017912802651393

    Article  CAS  Google Scholar 

  • Le GR, Oger F, Lecorgne A, Dudasova Z, Chevance S, Bondon A, Barath P, Simonneaux G, Salbert G (2009) Identification of small molecule regulators of the nuclear receptor HNF4α based on naphthofuran scaffolds. Bioorg Med Chem 17:7021–7030. doi:10.1016/j.bmc.2009.07.079

    Article  Google Scholar 

  • Lee YR, Kim BS (2001) Efficient synthesis of cytotoxic furonaphthoquinone natural products. Synth Commun 31:381–386. doi:10.1081/scc-100000527

    Article  CAS  Google Scholar 

  • Lee YR, Byun MW, Kim BS (1998) Efficient one-step synthesis of 2-arylfurans by ceric ammonium nitrate (CAN)-mediated cycloaddition of 1,3-dicarbonyl compounds to alkynes. Bull Korean Chem Soc 19:1080–1083

    CAS  Google Scholar 

  • Lee YR, Kim BS, Kim DH (2000) Ceric ammonium nitrate (CAN)-mediated oxidative cycloaddition of 1,3-dicarbonyls to conjugated compounds. Efficient synthesis of dihydrofurans, dihydrofurocoumarins, dihydrofuroquinolinones, dihydrofurophenalenones, and furonaphthoquinone natural products. Tetrahedron 56:8845–8853. doi:10.1016/s0040-4020(00)00839-5

    Article  CAS  Google Scholar 

  • Lee YR, Lee GJ, Kang KY (2002) Ceric ammonium nitrate(CAN)-mediated oxidative cycloaddition of 1,3-dicarbonyls to vinyl sulfides. Application to the synthesis of evodone and avicequinone-B. Bull Korean Chem Soc 23:1477–1480. doi:10.5012/bkcs.2002.23.10.1477

    Article  CAS  Google Scholar 

  • Lee YR, Kang KY, Lee GJ, Lee WK (2003) Efficient synthesis of dihydrofurans with sulfide groups by ceric(IV) ammonium nitrate-mediated oxidative cycloaddition of 1,3-dicarbonyl compounds to vinyl sulfides. Application to the synthesis of benzo[b]naphtho[2,3-d]furan-6,11-dione and first total synthesis of millettocalyxins C and pongamol methyl ether. Synthesis 1977–1988. doi:10.1055/s-2003-41023

  • Lumb J-P, Choong KC, Trauner D (2008) ortho-Quinone Methides from para-quinones: total Synthesis of Rubioncolin B. J Am Chem Soc 130:9230–9231. doi:10.1021/ja803498r

    Article  CAS  PubMed  Google Scholar 

  • Mahadevan KM, Vaidya VP (2003) Synthesis and pharmacological evaluation of some potent naphtho[2,1-b]furopyrazolyl, -oxadiazolyl, and -coumaryl derivatives. Indian J Pharm Sci 65:128–134

    CAS  Google Scholar 

  • Mahadevan KM, Padmashali B, Vaidya VP (2001) Studies in naphthofurans: Part V—synthesis of 2-aryl-1,2,3,4-tetrahydropyrido(naphtho[2,1-b]furan)-4-ones and their biological activity. Indian J Heterocycl Chem 11:15–20

    CAS  Google Scholar 

  • Marcocci L, Maguire JJ, Droy-Lefaix MT, Packer L (1994) The nitric oxide-scavenging properties of Ginkgo biloba extract EGb 761. Biochem Biophys Res Commun 201:748–755. doi:10.1006/bbrc.1994.1764

    Article  CAS  PubMed  Google Scholar 

  • Matthews JM, Chen X, Cryan E, Hlasta DJ, Rybczynski PJ, Strauss K, Tang Y, Xu JZ, Yang M, Zhou L, Demarest KT (2007) Design and synthesis of indane-ureido-thioisobutyric acids: a novel class of PPARα agonists. Bioorg Med Chem Lett 17:6773–6778. doi:10.1016/j.bmcl.2007.10.041

    Article  CAS  PubMed  Google Scholar 

  • Nair V, Menon RS, Vinod AU, Viji S (2002) A facile three-component reaction involving [4 + 1] cycloaddition leading to furan annulated heterocycles. Tetrahedron Lett 43:2293–2295. doi:10.1016/s0040-4039(02)00226-5

    Article  CAS  Google Scholar 

  • NCCLS (National Committee for Clinical Laboratory Standards) (1997) Performance standards for antimicrobial disk susceptibility tests. Approved standard M2-A6. National Committee for Clinical Laboratory Standards, Wayne, PA

  • Otani T, Sugimoto Y, Aoyagi Y, Igarashi Y, Furumai T, Saito N, Yamada Y, Asao T, Oki T (2000) New Cdc25B tyrosine phosphatase inhibitors, nocardiones A and B, produced by Nocardia sp. TP-A0248: taxonomy, fermentation, isolation, structural elucidation and biological properties. J Antibiot 53:337–344. doi:10.7164/antibiotics.53.337

    Article  CAS  PubMed  Google Scholar 

  • Pfaller MA, Burmeister L, Bartlett MS, Rinaldi MG (1988) Multicenter evaluation of four methods of yeast inoculum preparation. J Clin Microbiol 26:1437–1441

    PubMed Central  CAS  PubMed  Google Scholar 

  • Qian X, Zhang Y, Ni C (1994) The spectrum and antibacterial activity of naphthofurans and furans. J East China Inst Chem Technol 20:336–341

    CAS  Google Scholar 

  • Rontó G, Gróf P, Buisson J-P, Einhorn J, Demerseman P (1992) Genotoxic effectivity. Comparison of 36 nitrated furan and arenofuran derivatives on a quantitative scale. Statistical comparison of T7 and other short-term tests. Mutagenesis 7:243–249. doi:10.1093/mutage/7.4.243

    Article  PubMed  Google Scholar 

  • Ruch RJ, Cheng S, Klaunig JE (1989) Prevention of cytotoxicity and inhibition of intercellular communication by antioxidant catechins isolated from Chinese green tea. Carcinogenesis (Lond) 10:1003–1008. doi:10.1093/carcin/10.6.1003

    Article  CAS  Google Scholar 

  • Sastry MNV, Claessens S, Habonimana P, De Kimpe N (2010) Synthesis of the natural products 3-hydroxymollugin and 3-methoxymollugin. J Org Chem 75:2274–2280. doi:10.1021/jo100024b

    Article  CAS  PubMed  Google Scholar 

  • Schildknecht H, Straub F (1976) Structure and synthesis of furomollugin from rhizomes of Galium mollugo L. (Rubiaceae). Justus Liebigs Ann Chem 1976:1772–1776

  • Shashikala DK, Ramaiah M, Vanita GK, Veena K, Vaidya VP (2011) Synthesis and analgesic activity of triazolothiadiazoles and triazolothiadiazines encompassing 3-nitronaphtho[2,1-b]furan. J Chem Pharm Res 3:445–451

    Google Scholar 

  • Son JK, Jung SJ, Jung JH, Fang Z, Lee CS, Seo CS, Moon DC, Min BS, Kim MR, Woo MH (2008) Anticancer constituents from the roots of Rubia cordifolia L. Chem Pharm Bull 56:213–216. doi:10.1248/cpb.56.213

    Article  CAS  PubMed  Google Scholar 

  • Srivastava V, Negi AS, Kumar JK, Faridi U, Sisodia BS, Darokar MP, Luqman S, Khanuja SPS (2006) Synthesis of 1-(3′,4′,5′-trimethoxy)phenylnaphtho[2,1-b]furan as a novel anticancer agent. Bioorg Med Chem Lett 16:911–914. doi:10.1016/j.bmcl.2005.10.105

    Article  CAS  PubMed  Google Scholar 

  • Velmurugan D, Selvi UM, Mythily U, Rao K, Rajarajeshwari R, Sangeetha (2012) Structure-based discovery of anti-viral compounds for hepatitis B & C, human immunodeficiency, and dengue viruses. Curr Bioinform 7:187–211. doi:10.2174/157489312800604462

    Article  CAS  Google Scholar 

  • Wu L, Wang S, Hua H, Li X, Zhu t, Miyase T, Ueno A (1991) 6-Methoxygeniposidic acid, and iridoid glycoside from Rubia cordifolia. Phytochemistry 30:1710–1711. doi:10.1016/0031-9422(91)84241-j

    Article  CAS  Google Scholar 

  • Xia L, Lee YR (2013) A novel and efficient synthesis of diverse dihydronaphtho[1,2-b]furans using the ceric ammonium nitrate-catalyzed formal [3 + 2] cycloaddition of 1,4-naphthoquinones to olefins and its application to furomollugin. Org Biomol Chem 11:6097–6107. doi:10.1039/c3ob40977e

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Nano Material Technology Development Program through the Korean National Research Foundation (NRF) funded by the Korean Ministry of Education, Science, and Technology (2012M3A7B4049675).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Rok Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xia, L., Idhayadhulla, A., Lee, Y.R. et al. Antioxidant and antibacterial evaluation of synthetic furomollugin and its diverse analogs. Med Chem Res 23, 3528–3538 (2014). https://doi.org/10.1007/s00044-014-0929-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-014-0929-9

Keywords

Navigation