Skip to main content
Log in

Latest QSAR study of adenosine A\(_{\mathrm{2B}}\) receptor affinity of xanthines and deazaxanthines

  • Full-Length Paper
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Adenosine, a widespread and endogenous nucleoside that acts as a powerful neuromodulator in the nervous system, is a promising therapeutic target in a wide range of conditions. The structural similarity between xanthine derivatives and neurotransmitter adenosine has led to the derivatives of the heterocyclic ring being among the most abundant chemical classes of ligand antagonists of adenosine receptor subtypes. Small changes in the xanthine scaffold have resulted in a wide array of adenosine receptor antagonists. In this work, we developed a QSAR model for the \(\hbox {A}_{\mathrm{2B}}\) subtype, which is, as yet, not well characterized, with two purposes in mind: to predict adenosine \(\hbox {A}_{\mathrm{2B}}\) antagonist activity and to offer a substructural interpretation of this group of xanthines. The QSAR model provided good classifications of both the test and external sets. In addition, most of the contributions to adenosine \(\hbox {A}_{\mathrm{2B}}\) receptor affinity derived by subfragmentation of the molecules in the training set agree with the relationships observed in the literature. These two factors mean that this QSAR ensemble could be used as a model to predict future adenosine \(\hbox {A}_{\mathrm{2B}}\) antagonist candidates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mohamed T, Osman W, Tin G, Rao P (2013) Selective inhibition of human acetylcholinesterase by xanthine derivatives: in vitro inhibition and molecular modeling investigations. Bioorg Med Chem Lett 23:4336–4341. doi:10.1016/j.bmcl.2013.05.092

    Article  CAS  PubMed  Google Scholar 

  2. Salhiyyah K, Senanayake E, Abdel-Hadi M, Booth A, Michaels JA (2012) Pentoxifylline for intermittent claudication. Cochrane Database Syst Rev CD005262. doi:10.1002/14651858.CD005262.pub2

  3. Czechtizky W, Dedio J, Desai B, Dixon K, Farrant E, Feng QX, Morgan T, Parry D (2013) Integrated synthesis and testing of substituted xanthine based DPP4 inhibitors: application to drug discovery. ACS Med Chem Lett 4:768–772. doi:10.1021/ml400171b

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Cazzola M, Page C, Calzetta L, Matera M (2012) Pharmacology and therapeutics of bronchodilators. Pharmacol Rev 64:450–504. doi:10.1124/pr.111.004580

    Article  CAS  PubMed  Google Scholar 

  5. Diniz C, Borges F, Santana L, Uriarte E, Oliveira J, Goncalves J, Fresco P (2008) Ligands and therapeutic perspectives of adenosine A(2A) receptors. Curr Pharm Design 14:1698–1722. doi:10.2174/138161208784746842

    Article  CAS  Google Scholar 

  6. Ratheesh A, Jain M, Gude P (2010) Antimetastatic action of pentoxifylline, a methyl xanthine derivative, through its effect on PKC mediated integrin transport in B16F10 melanoma cells. World J Oncol 1:194–203

    CAS  Google Scholar 

  7. Pacher P, Nivorozhkin A, Szabó C (2006) Therapeutic effects of xanthine oxidase inhibitors: Renaissance half a century after the discovery of allopurinol. Pharmacol Rev 58:87–114. doi:10.1124/pr.58.1.6

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Francis SH, Sekhar KR, Ke H, Corbin JD (2011) Inhibition of cyclic nucleotide phosphodiesterases by methylxanthines and related compounds. Handb Exp Pharmacol 200:93–133. doi: 10.1007/978-3-642-13443-2_4

  9. Gu Y, Wang W, Zhu X, Dong K (2014) Molecular dynamic simulations reveal the mechanism of binding between xanthine inhibitors and DPP-4. J Mol Model 20:1–12. doi:10.1007/s00894-014-2075-1

    Google Scholar 

  10. Mueller C, Jacobson K (2011) Xanthines as adenosine receptor antagonists. In: Fredholm BB (ed) Methylxanthines, handbook of experimental pharmacology. Springer, Berlin, pp 151–199

    Google Scholar 

  11. Fredholm BB, Ijzerman AP, Jacobson KA, Linden J, Muller CE (2011) International union of pharmacology XXV Nomenclature and classification of adenosine receptors. Pharmacol Rev 63:1–34

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Wilson C, Mustafa S (2009) Adenosine receptors in health and disease. Springer, New York

    Book  Google Scholar 

  13. Zhong H, Wu Y, Belardinelli L, Zeng D (2006) \(\rm {A}_{{\rm 2B}}\) adenosine receptors induce IL-19 from bronchial epithelial cells, resulting in TNF-alpha increase. Am J Respir Cell Mol Biol 35:587–592. doi: 10.1165/rcmb.2005-04760C

  14. Feoktistov I, Ryzhov S, Zhong H, Goldstein A, Matafonov A, Zeng D, Biaggioni I (2004) Hypoxia modulates adenosine receptors in human endothelial and smooth muscle cells toward an \(\rm {A}_{{\rm 2B}}\) angiogenic phenotype. Hypertension 44:649–654. doi: 10.1161/01.HYP.0000144800.21037.a5

  15. Feoktistov I, Ryzhov S, Goldstein A, Biaggioni I (2003) Mast cell-mediated stimulation of angiogenesis: cooperative interaction between \(\rm {A}_{{\rm 2B}}\) and A3 adenosine receptors. Circ Res 92:485–492. doi: 10.1161/01.RES.0000061572.10929.2D

  16. Kalla R, Elzein E, Perry T, Li X, Gimbel A, Yang M, Zeng D, Zablocki J (2008) Selective, high affinity \(\rm {A}_{{\rm 2B}}\) adenosine receptor antagonist: N-1 monosubstituted 8-(pyrazol-4-yl)xanthines. Bioorg Med Chem Lett 18:1397–1401. doi: 10.1016/j.bmcl.2008.01.008

  17. Ryzhov S, Novitskiy SV, Zaynagetdinov R, Goldstein AE, Carbone DP, Biaggioni I, Dikov MM, Feoktistov I (2008) Host \(\rm {A}_{{\rm 2B}}\) adenosine receptors promote carcinoma growth. Neoplasia 10:987–995. doi: 10.1593/neo.08478

  18. Beukers M, Meurs I, IJzerman A (2006) Structure-afinity relationships of adenosine \(\rm {A}_{{\rm 2B}}\) receptor ligands. Med Res Rev 26:667–698. doi: 10.1002/med.20069

  19. Moro S, Gao Z-G, Jacobson K, Spalluto G (2006) Progress in the pursuit of therapeutic adenosine receptor antagonists. Med Res Rev 26:131–159. doi:10.1002/med.20048

    Article  CAS  PubMed  Google Scholar 

  20. Burnet M, Stohr T, Donsbach M (2014) Patente \(\text{ no }\) 20140142113 A1 20140522 US

  21. Teijeira M, Gonzalez MP, Saiz-Urra L, Teran C, Rivero V, Lopez-Romero JM (2011) Topological descriptors for predicting affinity of xanthine derivates to \(\rm {A}_{{\rm 2B}}\) adenosine receptors. In: Putz M (ed) Advances in chemical modeling. Nova Press, Burleigh Heads, pp 267–280

  22. Paz O, Brito C, Castilho M (2014) Quantitative insights towards the design of potent deazaxanthine antagonists of adenosine 2B receptors. J Enzym Inhib Med Chem 29:590–598

    Article  CAS  Google Scholar 

  23. Bonet I, Franco-Montero P, Rivero V, Teijeira M, Borges F (2013) Classifier ensemble based on feature selection and diversity measures for predicting the affinity of \(\rm {A}_{{\rm 2B}}\) adenosine receptor antagonists. J Chem Inf Model 53:3140–3155. doi: 10.1021/ci300516w

  24. Mansourian M, Fassihi A, Saghaie L, Madadkar-Sobhani A, Mahnam K, Abbasi M (2015) QSAR and docking analysis of \(\rm {A}_{{\rm 2B}}\) adenosine receptor antagonists based on non-xanthine scaffold. Med Chem Res 24:394–407. doi: 10.1007/s00044-014-1133-7

  25. Joseph TB, Kumar BVSS, Santhosh B, Kriti S, Pramod AB, Ravikumar M, Kishore M (2008) Quantitative structure activity relationship and pharmacophore studies of adenosine receptor \(\rm {A}_{{\rm 2B}}\) inhibitors. Chem Biol Drug Des 72:395–408. doi: 10.1111/j.1747-0285.2008.00714.x

  26. Song Y, Coupar IM, Iskander MN (2001) Structural predictions of adenosine 2B antagonist affinity using molecular field analysis. Quant Struct Act Relat 20:23–30. doi: 10.1002/1521-3838(200105)20:1.;23:AID-QSAR23.;3.0.CO;2-I

  27. Ivanov AA, Wang B, Klutz AM, Chen VL, Gao ZG, Jacobson KA (2008) Probing distal regions of the \(\rm {A}_{{\rm 2B}}\) adenosine receptor by quantitative structure-activity relationship modeling of known and novel agonists. J Med Chem 51:2088–2099. doi: 10.1021/jm701442d

  28. Carotti A, Stefanachi A, Ravina E, Sotelo E, Loza MI, Cadavid MI, Centeno NB, Nicolotti O (2004) 8-substituted-9-deazaxanthines as adenosine receptor ligands: design, synthesis and structure-affinity relationships at A(2B). Eur J Med Chem 39:879–887. doi:10.1016/j.ejmech.2004.07.008

    Article  CAS  PubMed  Google Scholar 

  29. Stefanachi A, Brea JM, Cadavid MI, Centeno NB, Esteve C, Loza MI, Martinez A, Nieto R, Ravina E, Sanz F, Segarra V, Sotelo E, Vidal B, Carotti A (2008) 1-, 3- and 8-substituted-9-deazaxanthines as potent and selective antagonists at the human A(2B) adenosine receptor. Bioorg Med Chem 16:2852–2869. doi:10.1016/j.bmc.2008.01.002

    Article  CAS  PubMed  Google Scholar 

  30. Stefanachi A, Nicolotti O, Leonetti F, Cellamare S, Campagna F, Loza MI, Brea JM, Mazza F, Gavuzzo E, Carotti A (2008) 1,3-Dialkyl-8-(hetero)aryl-9-OH-9-deazaxanthines as potent \(\text{ A }_{\rm 2B}\) adenosine receptor antagonists: Design, synthesis, structure-affinity and structure-selectivity relationships. Bioorg Med Chem 16:9780–9789. doi:10.1016/j.bmc.2008.09.067

    Article  CAS  PubMed  Google Scholar 

  31. Nieto MI, Balo MC, Brea J, Caamano O, Fernandez F, Garcia-Mera X, Lopez C (2010) Synthesis and pharmacological evaluation of novel substituted 9-deazaxanthines as A(2B) receptor antagonists. Eur J Med Chem 45:2884–2892. doi:10.1016/j.ejmech.2010.03.011

    Article  CAS  PubMed  Google Scholar 

  32. Fernandez F, Caamano O, Nieto MI, Lopez C, Garcia-Mera X, Stefanachi A, Nicolotti O, Loza MI, Brea J, Esteve C, Segarra V, Vidal B, Carotti A (2009) 1,3-Dialkyl-8-N-substituted benzyloxycarbonylamino-9-deazaxanthines as potent adenosine receptor ligands: Design, synthesis, structure-affinity and structure-selectivity relationships. Bioorg Med Chem 17:3618. doi:10.1016/j.bmc.2009.03.062

    Article  CAS  PubMed  Google Scholar 

  33. Carotti A, Cadavid MI, Centeno NB, Esteve C, Loza MI, Martinez A, Nieto R, Ravina E, Sanz F, Segarra V, Sotelo E, Stefanachi A, Vidal B (2006) Design, synthesis, and structure-activity relationships of 1-,3-,8-, and 9-substituted-9-deazaxanthines at the human A(2B) adenosine receptor. J Med Chem 49:282–299. doi:10.1021/jm0506221

    Article  CAS  PubMed  Google Scholar 

  34. Baraldi PG, Tabrizi MA, Preti D, Bovero A, Romagnoli R, Fruttarolo F, Naser Abdel M, Allan R, Varani K, Gessi S, Merighi S, Borea PA (2004) Design, synthesis, and biological evaluation of new 8-heterocyclic xanthine derivatives as highly potent and selective human \(\rm {A}_{{2B}}\) adenosine receptor antagonists. J Med Chem 47:1434–1447. doi: 10.1021/jm0309654

  35. Balo MC, Brea J, Caamano O, Fernandez F, Garcia-Mera X, Lopez C, Loza MI, Nieto MI, Rodriguez-Borges JE (2009) Synthesis and pharmacological evaluation of novel 1- and 8- substituted-3-furfutyl xanthines as adenosine receptor antagonists. Bioorg Med Chem 17:6755–6760. doi:10.1016/j.bmc.2009.07.034

    Article  CAS  PubMed  Google Scholar 

  36. Rodriguez-Borges JE, Garcia-Mera X, Balo MC, Brea J, Caamano O, Fernandez F, Lopez C, Loza MI, Nieto MI (2010) Synthesis and pharmacological evaluation of novel 1,3,8-and 1,3,7,8-substituted xanthines as adenosine receptor antagonists. Bioorg Med Chem 18:2001–2009. doi:10.1016/j.bmc.2010.01.028

    Article  CAS  PubMed  Google Scholar 

  37. Nieto MI, Balo MC, Brea J, Caamano O, Cadavid MI, Fernandez F, Mera XG, Lopez C, Rodriguez-Borges JE (2009) Synthesis of novel 1-alkyl-8-substituted-3-(3-methoxypropyl) xanthines as putative A(2B) receptor antagonists. Bioorg Med Chem 17:3426. doi:10.1016/j.bmc.2009.03.029

    Article  CAS  PubMed  Google Scholar 

  38. Talete, srl (2006) Dragon for windows (software for molecular descriptors calculation) version 54. Talete, srl, Milano

  39. Chemical Computing Group (2008) Molecular operating environment (MOE). Chemical Computing Group, Montreal

  40. Yasri A, Hartsough D (2001) Toward an optimal procedure for variable selection and QSAR model building. J Chem Inf Comput Sci 41:1218–27. doi:10.1021/ci010291a

    Article  CAS  PubMed  Google Scholar 

  41. Gore P (2000) Handbook of applied multivariate statistics and mathematical modelling. Academic Press, San Diego

    Google Scholar 

  42. Duchowicz PR, Castro EA, Fernndez FM (2006) Alternative algorithm for the search of an optimal set of descriptors in QSAR-QSPR studies. MATCH Commun Math Comput Chem 55:179–192

    CAS  Google Scholar 

  43. StatSoft Inc. (2002) StatSoft Statistica, version 8.0. StatSoft Inc., Tulsa

  44. Pérez-Garrido A, Helguera AM, Borges F, Cordeiro MN, Rivero V, Escudero AG (2011) Two new parameters based on distances in a receiver operating characteristic chart for the selection of classification models. J Chem Inf Model 51:2746–2759. doi:10.1021/ci2003076

    Article  PubMed  Google Scholar 

  45. Olivares-Morales A, Hatley OJD, Turner D, Galetin A, Aarons L, Rostami-Hodjegan A (2014) The use of ROC analysis for the qualitative prediction of human oral bioavailability from animal data. Pharm Res 31:720–730. doi:10.1007/s11095-013-1193-2

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Nandy A, Kar S, Roy K (2014) Development of classification- and regression-based QSAR models and in silico screening of skin sensitisation potential of diverse organic chemicals. Mol Simul 40:261–274. doi:10.1080/08927022.2013.801076

    Article  CAS  Google Scholar 

  47. Pérez-Garrido A, Girón-Rodríguez F, Morales Helguera A, Borges F, Combes RD (2014) Topological structural alerts modulations of mammalian cell mutagenicity for halogenated derivatives. SAR QSAR Environ Res 25:17–33. doi:10.1080/1062936X.2013.820791

    Article  PubMed  Google Scholar 

  48. Morales Helguera A, Pérez-Garrido A, Gaspar A, Cagide F, Vina D, Cordeiro MNDS, Borges F (2013) Combining QSAR classification models for predictive modeling of human monoamine oxidase inhibitors. Eur J Med Chem 59:75–90. doi:10.1016/j.ejmech.2012.10.035

    Article  Google Scholar 

  49. Wold S, Eriksson L, Clementi S (1995) Statistical validation of QSAR results. In: van de Waterbeemd H (ed) Chemometric methods in molecular design. Wiley-VCH, Berlin, pp 309–338. doi:10.1002/9783527615452.ch5

    Chapter  Google Scholar 

  50. de Cerqueira Lima P, Golbraikh A, Oloff S, Xiao Y, Tropsha A (2006) Combinatorial QSAR modeling of P-glycoprotein substrates. J Chem Inf Model 46:1245–1254. doi:10.1021/ci0504317

    Article  Google Scholar 

  51. Todeschini R, Ballabio D, Consonni V, Manganaro W, Mauri A (2009) Canonical measure of correlation (CMC) and canonical measure of distance (CMD) between sets of data part 1 theory and simple chemometric applications. Anal Chim Acta 648:45–51. doi:10.1016/j.aca.2009.06.032

    Article  CAS  PubMed  Google Scholar 

  52. Krzanowski WJ (1988) Principles of multivariate analysis. Oxford University Press, New York

    Google Scholar 

  53. Kuncheva LI (2004) Combining pattern classifiers methods and algorithms. Wiley, New Jersey

    Book  Google Scholar 

  54. Netzeva TI, Worth AP, Aldenberg T, Benigni R, Cronin MTD, Gramatica P, Jaworska JS, Kahn S, Klopman P, Marchant CA, Myatt G, Patlewicz GY, Perkins R, Roberts DW, Schultz TW, Stanton DT (2005) Current status of methods for defining the applicability domain of (quantitative) structure-activity relationships. ATLA 33:155–173

    CAS  PubMed  Google Scholar 

  55. Gramatica P (2007) Principles of QSAR models validation: internal and external. QSAR Comb Sci 26:694–701. doi:10.1002/qsar.200610151

    Article  CAS  Google Scholar 

  56. Pérez-Garrido A, Morales Helguera A, Caravaca G, Cordeiro MNDS, scudero AG (2010) A topological substructural molecular design approach for predicting mutagenesis end-points of \(\alpha, \beta \)-unsaturated carbonyl compounds. Toxicology 268:64–77. doi:10.1016/j.tox.2009.11.023

    Article  PubMed  Google Scholar 

  57. Pérez-Garrido A, Morales Helguera A, Ruiz JMM, Rentero PZ (2012) Topological sub-structural molecular design approach: radical scavenging activity. Eur J Med Chem 49:86–94. doi:10.1016/j.ejmech.2011.12.030

    Article  PubMed  Google Scholar 

  58. Tropsha A, Gramatica P, Gombar V (2003) The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR Models. QSAR Comb Sci 22:69–77. doi:10.1002/qsar.200390007

    Article  CAS  Google Scholar 

  59. Polishchuk PG, Kuz’min VE, Artemenko AG, Muratov EN (2013) Universal approach for structural interpretation of QSAR/QSPR models. Mol Inf 32:843–853. doi:10.1002/minf.201300029

    Article  CAS  Google Scholar 

  60. Instant Jchem version 6.2.1 (2014) Chemaxon Ltd, Budapest, https://www.chemaxon.com

  61. Liu H, Gramatica P (2007) QSAR study of selective ligands for the thyroid hormone receptor beta. Bioorg Med Chem 15:5251–5261. doi:10.1016/j.bmc.2007.05.016

    Article  CAS  PubMed  Google Scholar 

  62. Helguera A, Combes R, González M, Cordeiro M (2008) Aplications of 2D descriptors in drug design: a DRAGON tale. Curr Top Med Chem 8:1628–1655. doi:10.2174/156802608786786598

    Article  CAS  PubMed  Google Scholar 

  63. Borghini A, Pietra D, Domenichellia P, Bianuccia A (2005) QSAR study on thiazole and thiadiazole analogues as antagonists for the adenosine A1 and A3 receptors. Bioorg Med Chem 13:5330–5337. doi:10.1016/j.bmc.2005.05.041

    Article  CAS  PubMed  Google Scholar 

  64. Bhattacharya P, Leonard J, Roy K (2005) Exploring QSAR of thiazole and thiadiazole derivatives as potent and selective human adenosine A3 receptor antagonists using FA and GFA techniques. Bioorg Med Chem 13:1159–1165. doi:10.1016/j.bmc.2004.11.022

    Article  CAS  PubMed  Google Scholar 

  65. Roy K, Leonard J, Sengupt C (2004) QSAR of adenosine receptor antagonists part 3: exploring physicochemical requirements for selective binding of 1,2,4-triazolo5,1-i.purine derivatives with human adenosine A3 receptor subtype. Bioorg Med Chem Lett 14:3705–3709. doi:10.1016/j.bmcl.2004.05.007

  66. Bhattacharya P, Roy K (2005) QSAR of adenosine A3 receptor antagonist 1,2,4-triazolo4,3-a.quinoxalin-1-one derivatives using chemometric tools. Bioorg Med Chem Lett 15:3737–3743. doi:10.1016/j.bmcl.2005.05.051

    Article  CAS  PubMed  Google Scholar 

  67. Doichinova I, Natcheva R, Mihailova D (1994) QSAR studies of S-substituted xanthines as adenosine receptor antagonists. Eur J Med Chem 29:133–138. doi:10.1016/0223-5234(94)90210-0

    Article  CAS  Google Scholar 

  68. Cheng F, Xu Z, Liu G, Tang Y (2010) Insights into binding modes of adenosine A\(_{2B}\) antagonists with ligand-based and receptor-based methods. Eur J Med Chem 45:3459–3471. doi:10.1016/j.ejmech.2010.04.039

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Catholic University of San Antonio (PMAFI/08/12) and by the Xunta de Galicia (CN2012/184), by the Fundación Séneca de la Región de Murcia under Project 18946/JLI/13, and by the Nils Coordinated Mobility under grant 012-ABEL-CM-2014A, in part financed by the European Regional Development Fund (ERDF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfonso Pérez-Garrido.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 236 KB)

Supplementary material 2 (pdf 331 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez-Garrido, A., Rivero-Buceta, V., Cano, G. et al. Latest QSAR study of adenosine A\(_{\mathrm{2B}}\) receptor affinity of xanthines and deazaxanthines. Mol Divers 19, 975–989 (2015). https://doi.org/10.1007/s11030-015-9608-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-015-9608-0

Keywords

Navigation