Skip to main content

A2A Adenosine Receptor: Structures, Modeling, and Medicinal Chemistry

  • Chapter
  • First Online:
The Adenosine Receptors

Part of the book series: The Receptors ((REC,volume 34))

Abstract

Many selective agonists and antagonists of the A2A adenosine receptor (AR) have been reported, while allosteric modulators specific for this receptor are still needed. Many heterocyclic chemotypes have been discovered as A2AAR antagonists, while most of the known AR agonists are nucleosides or 3,5-dicyanopyridine derivatives. A few A2AAR ligands have been in clinical trials as antihypertensives, anti-inflammatory or diagnostic compounds (agonists), and as drugs for treating Parkinson’s disease and cancer (antagonists). The A2AAR has become one of the most widely investigated G protein-coupled receptor (GPCR) structures using X-ray crystallography and also biophysical techniques such as NMR. Thus, the design of agonists, antagonists, and allosteric modulators has become structure-based, with numerous examples of in silico approaches, including virtual ligand screening (VLS), leading to the discovery of both novel agonists and antagonists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al Jaroudi W, Iskandrian AE (2009) Regadenoson: a new myocardial stress agent. J Am Coll Cardiol 54:1123–1130

    Article  PubMed  CAS  Google Scholar 

  • Alanine A, Flohr A, Miller AK et al (2001) Preparation of N-benzothiazol-2-yl amides having affinity toward the A2A adenosine receptor. Patent WO 2001097786

    Google Scholar 

  • Alencar AKN, Montes GC, Barreiro EJ et al (2017) Adenosine receptors as drug targets for treatment of pulmonary arterial hypertension. Front Pharmacol 8:858

    Article  PubMed  PubMed Central  Google Scholar 

  • Andrews SP, Mason JS, Hurrell E et al (2014) Structure-based drug design of chromone antagonists of the adenosine A2A receptor. Med Chem Comm 5:571–575

    Article  CAS  Google Scholar 

  • Armentero MT, Pinna A, FerrĂ© S et al (2011) Past, present and future of a(2A) adenosine receptor antagonists in the therapy of Parkinson’s disease. Pharmacol Ther 132:280–299

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Atack JR, Shook BC, Rassnick S et al (2014) JNJ-40255293, a novel adenosine A2A/A1 antagonist with efficacy in preclinical models of Parkinson’s disease. ACS Chem Neurosci 5:1005–1019

    Article  PubMed  CAS  Google Scholar 

  • Bamford SJ, Gillespie RJ, Todd RS et al (2009) Triazolo[4,5-d] pyrimidine derivatives, their preparation, and use as purine receptor antagonists for treating movement disorders and other diseases. Patent WO 2009156737

    Google Scholar 

  • Baraldi PG, Manfredini S, Simoni D et al (1994) Synthesis of new pyrazolo[4,3-e]1,2,4-triazolo[1,5-c] pyrimidine and 1,2,3-triazolo[4,5-e]1,2,4-triazolo[1,5-c] pyrimidine displaying potent and selective activity as A2A adenosine receptor antagonists. Bioorg Med Chem Lett 4:2539–2544

    Article  CAS  Google Scholar 

  • Baraldi PG, Cacciari B, Spalluto G et al (1996) Pyrazolo[4,3- e ]-1,2,4-triazolo[1,5- c ]pyrimidine derivatives: potent and selective A2A adenosine antagonists. J Med Chem 39:1164–1171

    Article  PubMed  CAS  Google Scholar 

  • Baraldi PG, Cacciari B, Spalluto G et al (1998) Design, synthesis, and biological evaluation of a second generation of pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidines as potent and selective A2A adenosine receptor antagonists. J Med Chem 41:2126–2133

    Article  PubMed  CAS  Google Scholar 

  • Baraldi PG, Cacciari B, Romagnoli R et al (2002) 7-substituted 5-amino-2-(2-furyl)pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidines as A2A adenosine receptor antagonists: a study on the importance of modifications at the side chain on the activity and solubility. J Med Chem 45:115–126

    Article  PubMed  CAS  Google Scholar 

  • Baraldi PG, Tabrizi MA, Bovero A et al (2003) Recent developments in the field of A2A and A3 adenosine receptor antagonists. Eur J Med Chem 38:367–382

    Article  PubMed  CAS  Google Scholar 

  • Baraldi PG, Tabrizi MA, Romagnoli R et al (2006) Pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidine template: organic and medicinal chemistry approach. Curr Org Chem 10:259–275

    Article  CAS  Google Scholar 

  • Baraldi PG, Tabrizi MA, Gessi S et al (2008) Adenosine receptor antagonists: translating medicinal chemistry and pharmacology into clinical utility. Chem Rev 108:238–263

    Article  PubMed  CAS  Google Scholar 

  • Baraldi PG, Preti D, Borea PA et al (2012a) Medicinal chemistry of A3 adenosine receptor modulators: pharmacological activities and therapeutic implications. J Med Chem 55:5676–5703

    Article  PubMed  CAS  Google Scholar 

  • Baraldi PG, Saponaro G, Aghazadeh Tabrizi M et al (2012b) Pyrrolo- and pyrazolo-[3,4-e][1,2,4]triazolo[1,5-c]pyrimidines as adenosine receptor antagonists. Bioorg Med Chem 20:1046–1059

    Article  PubMed  CAS  Google Scholar 

  • Baraldi PG, Saponaro G, Romagnoli R et al (2012c) Water-soluble pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidines as human A 3 adenosine receptor antagonists. J Med Chem 55:5380–5390

    Article  PubMed  CAS  Google Scholar 

  • Barawkar D, Basu S, Ramdas V et al (2012) Preparation of fused tricyclic compounds as therapeutic adenosine receptor antagonist. Patent WO 2012038980

    Google Scholar 

  • Barbay JK, Charavarty D, Shook BC et al (2010a) Preparation of methylene amines of thieno[2,3-d]pyrimidine and their use as adenosine A2A receptor antagonists. Patent WO 2010045006

    Google Scholar 

  • Barbay JK, Leonard K, Chakravarty D et al (2010b) Preparation of phenyl substituted thieno[2,3-d]pyrimidines and their use as adenosine A2A receptor antagonists. Patent WO2010045013

    Google Scholar 

  • Barret O, Hannestad J, Vala C et al (2015) Characterization in humans of 18F-MNI-444, a PET radiotracer for brain adenosine 2A receptors. J Nucl Med 56:586–591

    Article  PubMed  CAS  Google Scholar 

  • Barrington WW, Jacobson KA, Hutchison AJ et al (1989) Identification of the A2 adenosine receptor binding subunit by photoaffinity crosslinking. Proc Nat Acad Sci USA 86:6572–6576

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Basu S, Barawkar DA, Ramdas V et al (2017) Discovery of potent and selective A2A antagonists with efficacy in animal models of Parkinson’s disease and depression. ACS Med Chem Lett 8:835–840

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Beattie D, Brearley A, Brown Z et al (2010) Synthesis and evaluation of two series of 4′-aza-carbocyclic nucleosides as adenosine A2A receptor agonists. Bioorg Med Chem Lett 20:1219–1224

    Article  PubMed  CAS  Google Scholar 

  • Bennett KA, Tehan B, Lebon G et al (2013) Pharmacology and structure of isolated conformations of the adenosine A2A receptor define ligand efficacy. Mol Pharmacol 83:949–958

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bharate SB, Singh B, Kachler S (2016) Discovery of 7-(Prolinol-N-yl)-2-phenylamino-thiazolo[5,4-d]pyrimidines as novel non-nucleoside partial agonists for the A2A adenosine receptor: prediction from molecular modeling. J Med Chem 59:5922–5928

    Article  PubMed  CAS  Google Scholar 

  • Bortolato A, Tehan BG, Bodnarchuk MS et al (2013) Water network perturbation in ligand binding: adenosine A2A antagonists as a case study. J Chem Inf Model 53:1700–1713

    Article  PubMed  CAS  Google Scholar 

  • Bosch MP, Campos F, Niubo I et al (2004) Synthesis and biological activity of new potential agonists for the human adenosine A2A receptor. J Med Chem 47:4041–4053

    Article  PubMed  CAS  Google Scholar 

  • Bridges AJ, Bruns RF, Ortwine DF et al (1988) N6-[2-(3,5-dimethoxyphenyl)-2-(2-methylphenyl)ethyl]adenosine and its uronamide derivatives. Novel adenosine agonists with both high affinity and high selectivity for the adenosine A2 receptor. J Med Chem 31:1282–1285

    Article  PubMed  CAS  Google Scholar 

  • Bruns RF (1980) Adenosine receptor activation in human fibroblasts: nucleoside agonists and antagonists. Can J Physiol Pharmacol 58:673–691

    Article  PubMed  CAS  Google Scholar 

  • Brunschweiger A, Koch P, Schlenk M et al (2014) 8-Benzyltetrahydropyrazino[2,1-f]purinediones: water-soluble tricyclic xanthine derivatives as multitarget drugs for neurodegenerative diseases. ChemMedChem 9:1704–1724

    PubMed  CAS  Google Scholar 

  • Cabri W, Minetti P, Piersanti G et al (2010) Preparation of triazolyl purine derivatives useful as ligands of the adenosine A2A receptor and their use as medicaments. Patent WO 2010106145

    Google Scholar 

  • Camacho Gomez JA, Castro-Palomino Laria JC (2014) Preparation of 4-aminopyrimidine derivatives and their use as therapeutic adenosine A2A receptor antagonists. Patent WO 2011121418

    Google Scholar 

  • Carlsson J, Yoo L, Gao ZG et al (2010) Structure-based discovery of A2A adenosine receptor ligands. J Med Chem 53:3748–3755

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carlsson J, Tosh DK, Phan K et al (2012) Structure-activity relationships and molecular modeling of 1,2,4-triazoles as adenosine receptor antagonists. ACS Med Chem Lett 3:715–720

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carpenter B, Lebon G (2017) Human adenosine A2A receptor: molecular mechanism of ligand binding and activation. Front Pharmacol 8:898

    Article  PubMed  PubMed Central  Google Scholar 

  • Carpenter B, NehmĂ© R, Warne T et al (2016) Structure of the adenosine A2A receptor bound to an engineered G protein. Nature 536:104–107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chakravarty D, Shook BC (2010) Preparation of amines and sulfoxides of thieno[2,3-d]pyrimidine and their use as adenosine A2A receptor antagonists. Patent WO 2010045017

    Google Scholar 

  • Chebib M, McKeveney D, Quinn RJ (2000) 1-Phenylpyrazolo[3,4-d]pyrimidines; structure-activity relationships for C6 substituents at A1 and A2A adenosine receptors. Bioorg Med Chem 8:2581–2590

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Moorjani M, Slee DH et al (2008) Preparation of pyrimidines as adenosine A2A receptor antagonists. Patent WO 2008116185

    Google Scholar 

  • Chen D, Errey JC, Heitman LH et al (2012) Fragment screening of GPCRs using biophysical methods: identification of ligands of the adenosine A2A receptor with novel biological activity. ACS Chem Biol 7:2064–2073

    Article  PubMed  CAS  Google Scholar 

  • Chen JF, Eltzschig HK, Fredholm BB (2013) Adenosine receptors as drug targets-what are the challenges? Nat Rev Drug Discov 12:265–286

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Congreve M, Andrews SP, Mason JS et al (2011) Preparation of 1,2,4-triazin-3- amine derivatives as A1 and A2A receptor inhibitors useful in the treatment of diseases. Patent WO 2011095625

    Google Scholar 

  • Congreve M, Andrews SP, DorĂ© AS et al (2012) Discovery of 1,2,4-triazine derivatives as adenosine A2A antagonists using structure based drug design. J Med Chem 55:1898–1903

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cox B, Keeling SE, Allen DG et al (1998) 2-(Purin-9-yl)-tetrahydrofuran-3,4-diol derivatives. WO 98/28319

    Google Scholar 

  • Cristalli G, Volpini R, Vittori S et al (1994) 2-Alkynyl derivatives of adenosine-5′-ethyluronamide: selective A2 adenosine receptor agonists with potent inhibitory activity on platelet aggregation. J Med Chem 37:1720–1726

    Article  PubMed  CAS  Google Scholar 

  • Cristalli G, Camaioni E, Costanzi S et al (1998) Characterization of potent ligands at human recombinant adenosine receptors. Drug Dev Res 45:176–181

    Article  CAS  Google Scholar 

  • Cristalli G, Cacciari B, Dal Ben D et al (2007) Highlights on the development of A2A adenosine receptor agonists and antagonists. Chem Med Chem 2:260–281

    Article  PubMed  CAS  Google Scholar 

  • Cristalli G, Lambertucci C, Marucci G et al (2008) A2A adenosine receptor and its modulators: overview on a Druggable GPCR and on structure-activity relationship analysis and binding requirements of agonists and antagonists. Curr Pharm Des 14:1525–1552

    Article  PubMed  CAS  Google Scholar 

  • de Lera RM, Lim Y-H, Zheng J (2014) Adenosine A2A receptor as a drug discovery target. J Med Chem 57:3623–3650

    Article  CAS  Google Scholar 

  • Day YJ, Li Y, Rieger JM et al (2005) A2A adenosine receptors on bone marrow-derived cells protect liver from ischemia-reperfusion injury. J Immunol 174:5040–5046

    Article  PubMed  CAS  Google Scholar 

  • Deflorian F, Kumar TS, Phan K, Gao ZG, Xu F, Wu H, Katritch V, Stevens RC, Jacobson KA (2012) Evaluation of molecular modeling of agonist binding in light of the crystallographic structure of the agonist-bound A2A adenosine receptor. J Med Chem 55:538–552

    Google Scholar 

  • Duroux R, Ciancetta A, Mannes P et al (2017) Bitopic fluorescent antagonists of the A2A adenosine receptor based on pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine functionalized congeners. Med Chem Commun 8:1659–1667

    Article  CAS  Google Scholar 

  • Eddy MT, Lee MY, Gao ZG et al (2018) Allosteric coupling of drug binding and intracellular signaling in the A2A adenosine receptor. Cell 172:68–80

    Article  PubMed  CAS  Google Scholar 

  • El-Tayeb A, Iqbal J, Behrenswert A et al (2009) Nucleoside-5′-monophosphates as prodrugs of adenosine A2A receptor agonists activated by ecto-5′-nucleotidase. J Med Chem 52:7669–7677

    Article  PubMed  CAS  Google Scholar 

  • El-Tayeb A, Michael S, Abdelrahman A et al (2011) Development of polar adenosine A2A receptor agonists for inflammatory bowel disease: synergism with A2B antagonists. ACS Med Chem Lett 2:890–895

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Falsini M, Squarcialupi L, Catarzi D et al (2017) The 1,2,4-Triazolo[4,3-a]pyrazin-3-one as a versatile scaffold for the design of potent adenosine human receptor antagonists. structural investigations to target the A2A receptor subtype. J Med Chem 60:5772–5790

    Article  PubMed  CAS  Google Scholar 

  • Federico S, Paoletta S, Cheong SL et al (2011) Synthesis and biological evaluation of a new series of 1,2,4-triazolo[1,5-a]-1,3,5-triazines as human A2A adenosine receptor antagonists with improved water solubility. J Med Chem 54:877–889

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fernández-Dueñas V, GĂłmez-Soler M, Jacobson KA et al (2012) Molecular determinants of the adenosine A2AR-dopamine D2 receptor-receptor allosterism: role of the intracellular loop 3 of the dopamine D2 receptor. J Neurochem 123:373–384

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Field JJ, Lin G, Okam MM et al (2013) Sickle cell vaso-occlusion causes activation of iNKT cells that is decreased by the adenosine A2A receptor agonist regadenoson. Blood 121:3329–3334

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Flögel U, Burghoff S, van Lent PLEM et al (2012) Selective activation of adenosine A2A receptors on immune cells by a CD73-dependent prodrug suppresses joint inflammation in experimental rheumatoid arthritis. Sci Transl Med 4:146ra-108

    Article  CAS  Google Scholar 

  • Flohr A, Jakob-Roetne R, Norcross RD et al (2003) Preparation of ureidobenzothiazoles as adenosine receptor ligands. Patent WO 2003049741

    Google Scholar 

  • Flohr A, Moreau J, Poli SM et al (2005) Preparation of N-(4-methoxy-7-morpholin-4-yl-benzothiazol-2-yl) 4-hydroxy-4-methyl-piperidine-1-carboxamide as a selective adenosine A2A receptor antagonist. Patent US 20050261289

    Google Scholar 

  • Franchetti P, Cappellacci L, Marchetti S et al (1998) 2′-C-methyl analogues of selective adenosine receptor agonists: synthesis and binding studies. J Med Chem 41:1708–1715

    Article  PubMed  CAS  Google Scholar 

  • Francis JE, Cash WD, Psychoyos S et al (1988) Structure-activity profile of a series of novel Triazoloquinazoline adenosine antagonists. J Med Chem 31:1014–1020

    Article  PubMed  CAS  Google Scholar 

  • Gao Z-G, IJzerman AP (2000) Allosteric modulation of A2A adenosine receptors by Amiloride analogues and sodium ions. Biochem Pharmacol 60:669–676

    Article  PubMed  CAS  Google Scholar 

  • Gao ZG, Blaustein J, Gross AS et al (2003) N6-substituted adenosine derivatives: selectivity, efficacy, and species differences at A3 adenosine receptors. Biochem Pharmacol 65:1675–1684

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gao X, Qian J, Zheng S et al (2014) Overcoming the blood–brain barrier for delivering drugs into the brain by using adenosine receptor Nanoagonist. ACS Nano 8:3678–3689

    Article  PubMed  CAS  Google Scholar 

  • Gatta F, Del Giudice M, Borioni A et al (1993) Synthesis of imidazo[1,2-c]pyrazolo[4,3-e]pyrimidines, pyrazolo[4,3-e]1,2,4-triazolo[1,5-c]pyrimidines and 1,2,4-triazolo[5,1-i]purines: new potent adenosine A2 receptor antagonists. Eur J Med Chem 28:569–576

    Article  CAS  Google Scholar 

  • Gessi S, Bencivenni S, Battistello E et al (2017) Inhibition of A2A adenosine receptor signaling in Cancer cells proliferation by the novel antagonist TP455. Front Pharmacol 8:888

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghai G, Francis JE, Williams M et al (1987) Pharmacological characterization of CGS 15943A: a novel nonxanthine adenosine antagonist. J Pharmacol Exp Ther 242:784–790

    PubMed  CAS  Google Scholar 

  • Gillespie RJ, Lerpiniere J, Dawson CE et al (2002a) Preparation of purine derivatives as purinergic receptor antagonists. Patent WO 2002055521

    Google Scholar 

  • Gillespie RJ, Lerpiniere J, Gaur S et al (2002b) Preparation of triazolo[4,5-d] pyrimidines as purinergic receptor antagonists. Patent WO 2002055083

    Google Scholar 

  • Gillespie RJ, Lerpiniere J, Dawson CE et al (2002c) Preparation of thieno[3,2-d]pyrimidines and furano[3,2-d]pyrimidines as purinergic receptor antagonists. Patent WO 2002055524

    Google Scholar 

  • Gillespie RJ, Cliffe IA, Dawson CE et al (2008a) Antagonists of the human adenosine A2A receptor. Part 2: design and synthesis of 4-arylthieno[3,2-d]pyrimidine derivatives. Roger Bioorg Med Chem Lett 18:2916–2919

    Article  CAS  Google Scholar 

  • Gillespie RJ, Cliffe IA, Dawson CE et al (2008b) Antagonists of the human adenosine A2A receptor. Part 3: design and synthesis of pyrazolo[3,4-d]pyrimidines, pyrrolo[2,3-d]pyrimidines and 6-arylpurines. Bioorg Med Chem Lett 18:2924–2929

    Article  PubMed  CAS  Google Scholar 

  • Gillespie RJ, Bamford SJ, Botting R et al (2009a) Antagonists of the human A2A adenosine receptor. 4. Design, synthesis, and preclinical evaluation of 7-aryltriazolo[4,5-d]pyrimidines. J Med Chem 52:33–47

    Article  PubMed  CAS  Google Scholar 

  • Gillespie RJ, Bamford SJ, Clay A et al (2009b) Antagonists of the human A2A receptor. Part 6: further optimization of pyrimidine-4-carboxamides. Bioorg Med Chem 17:6590–6605

    Article  PubMed  CAS  Google Scholar 

  • Gillespie RJ, Bamford SJ, Gaur S et al (2009c) Antagonists of the human A2A receptor. Part 5: highly bio-available pyrimidine-4-carboxamides. Bioorg Med Chem Lett 19:2664–2667

    Article  PubMed  CAS  Google Scholar 

  • Giorgi I, Biagi G, Bianucci AM et al (2008) N6-1,3-diphenylurea derivatives of 2-phenyl-9-benzyladenines and 8-azaadenines: synthesis and biological evaluation as allosteric modulators of A2A adenosine receptors. Eur J Med Chem 43:1639–1647

    Article  PubMed  CAS  Google Scholar 

  • Guckian KM, Kumaravel G (2011) Purine receptor antagonists for treating movement disorders. Patent WO 2011050160

    Google Scholar 

  • Guo D, Mulder-Krieger T, IJzerman AP et al (2012) Functional efficacy of adenosine A2A receptor agonists is positively correlated to their receptor residence time: efficacy and residence time of A2A receptor agonists. Br J Pharmacol 166:1846–1859

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guo D, Xia L, van Veldhoven JPD et al (2014) Binding kinetics of ZM241385 derivatives at the human adenosine A2A receptor. ChemMedChem 9:752–761

    Article  PubMed  CAS  Google Scholar 

  • Guo D, Pan AC, Dror RO et al (2016) Molecular basis of ligand dissociation from the adenosine A2A receptor. Mol Pharmacol 89:485–491

    Article  PubMed  CAS  Google Scholar 

  • Guo D, Heitman LH, IJzerman AP (2017) Kinetic aspects of the interaction between ligand and G protein-coupled receptor: the case of the adenosine receptors. Chem Rev 117:38–66

    Article  PubMed  CAS  Google Scholar 

  • Harada H, Asano O, Hoshino Y et al (2001) 2-alkynyl-8-aryl-9-methyladenines as novel adenosine receptor antagonists: their synthesis and structure-activity relationships toward hepatic glucose production induced via agonism of the A2B receptor. J Med Chem 44:170–179

    Article  PubMed  CAS  Google Scholar 

  • Harris JM, Neustadt BR, Stamford AW (2011a) Preparation of aminotriazolylquinoxaline derivatives and analogs for use as adenosine A2A receptor antagonists. Patent WO 2011060207

    Google Scholar 

  • Harris JM, Neustadt BR, Zhang H et al (2011b) Potent and selective adenosine A2A receptor antagonists: [1,2,4]-triazolo[4,3-c]pyrimidin-3-ones. Bioorg Med Chem Lett 21:2497–2501

    Article  PubMed  CAS  Google Scholar 

  • Hatfield SM, Sitkovsky M (2016) A2A adenosine receptor antagonists to weaken the hypoxia-HIF-1α driven immunosuppression and improve immunotherapies of cancer. Curr Opin Pharmacol 29:90–96

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Higgs C, Beuming T, Sherman W (2010) Hydration site thermodynamics explain SARs for Triazolylpurines analogues binding to the A2A receptor. ACS Med Chem Lett 1:160–164

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Homma H, Watanabe Y, Abiru T et al (1992) Nucleosides and nucleotides. 112. 2-(1-hexyn-1-yl)adenosine-5′-uronamides: a new entry of selective A2 adenosine receptor agonists with potent hypotensive activity. J Med Chem 35:2281–2290

    Article  Google Scholar 

  • Hou X, Majik SM, Kim K et al (2012) Structure-activity relationships of truncated C2- or C8-substituted adenosine derivatives as dual acting A2A and A3 adenosine receptor ligands. J Med Chem 55:342–356

    Article  PubMed  CAS  Google Scholar 

  • Hutchison AJ, Williams M, de Jesus R, Yokoyama R, Oei HH, Ghai GR, Webb RL, Zoganas HC, Stone GA, Jarvis MF (1990) 2-(Arylalkylamino)adenosin-5’-uronamides: a new class of highly selective adenosine A2 receptor ligands. J Med Chem 33:1919–1924

    Google Scholar 

  • Jacobson KA, Barrington WW, Pannell LK, Jarvis MF, Ji X-D, Williams M, Hutchison AJ, Stiles GL (1989) Agonist-derived molecular probes for A2 -adenosine receptors. J Mol Recognit 2:170–178

    Google Scholar 

  • Jacobson KA, Ohno M, Duong HT, Kim SK, Tchilibon S, Cesnek M, Holy A, Gao ZG (2005) A neoceptor approach to unraveling microscopic interactions between the human A2A adenosine receptor and its agonists. Chem Biol 12:237–247

    Google Scholar 

  • Jacobson MA (2002) Adenosine receptor agonists. Expert Opin Ther Pat 12:489–501

    Article  CAS  Google Scholar 

  • Jacobson KA (2013) Structure-based approaches to ligands for G-protein-coupled adenosine and P2Y receptors, from small molecules to nanoconjugates. J Med Chem 56:3749–3767

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jacobson KA, Stiles GL, Ji X-D (1992) Chemical modification and irreversible inhibition of striatal A2A-adenosine receptors. Mol Pharmacol 42:123–133

    PubMed  CAS  Google Scholar 

  • Jacobson KA, Gallo-Rodriguez C, Melman N et al (1993) Structure-activity relationships of 8-Styrylxanthines as A2-selective adenosine antagonists. J Med Chem 36:1333–1342

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jacobson KA, Ji X-D, Li AH et al (2000) Methanocarba analogues of purine nucleosides as potent and selective adenosine receptor agonists. J Med Chem 43:2196–2203

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jazayeri A, Andrews SP, Marshall FH (2017) Structurally enabled discovery of adenosine A2A receptor antagonists. Chem Rev 117:21–37

    Article  PubMed  CAS  Google Scholar 

  • Jespers W, Schiedel AC, Heitman LH et al (2018) Structural mapping of adenosine receptor mutations: ligand binding and signaling mechanisms. Trends Pharm Sci 39:75–89

    Google Scholar 

  • Ji X-D, Stiles GL, van Galen PJM et al (1992) Characterization of human striatal A2-adenosine receptors using radioligand binding and photoaffinity labeling. J Recept Res 12:149–169

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kase J, Kanda T (2011) Preparation of thiazole derivatives for the treatment of anxiety disorders. Patent WO 2011027806

    Google Scholar 

  • Kato M, Norifumi A, Minoru O et al (2005) 4-Amino-5-cyanopyrimidine derivatives. WO2005105778

    Google Scholar 

  • Katritch V, Jaakola V-P, Lane JR et al (2010) Structure-based discovery of novel chemotypes for adenosine A2A receptor antagonists. J Med Chem 53:1799–1809

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • KecskĂ©s M, Kumar TS, Yoo L et al (2010) Novel Alexa Fluor-488 labeled antagonist of the A2A adenosine receptor: application to a fluorescence polarization-based receptor binding assay. Biochem Pharmacol 80:506–511

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khanapur S, Paul S, Shah A et al (2014) Development of [18F]-labeled pyrazolo[4,3-e ]-1,2,4-triazolo[1,5-c]pyrimidine (SCH442416) analogs for the imaging of cerebral adenosine A2A receptors with positron emission tomography. J Med Chem 57:6765–6780

    Article  PubMed  CAS  Google Scholar 

  • Kim D-G, Bynoe SM (2016) A2A adenosine receptor modulates drug efflux transporter P-glycoprotein at the blood-brain barrier. J Clin Invest 126:1717–1733

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim J, Wess J, van Rhee AM et al (1995) Site-directed mutagenesis identifies residues involved in ligand recognition in the human A2A adenosine receptor. J Biol Chem 270:13987–13997

    Article  PubMed  CAS  Google Scholar 

  • Kiselgof E, Tulshian DB, Arik L et al (2005) 6-(2-Furanyl)-9H-purin-2-amine derivatives as A2A adenosine antagonists. Bioorg Med Chem Lett 15:2119–2122

    Article  PubMed  CAS  Google Scholar 

  • Kumari N, Mishra CB, Prakash A et al (2014) 8-(Furan-2-yl)-3-phenethylthiazolo[5,4-e][1,2,4]triazolo[1,5-c]pyrimidine-2(3H)-thione as novel, selective and potent adenosine A2A receptor antagonist. Neurosci Lett 558:203–207

    Article  PubMed  CAS  Google Scholar 

  • Kuo S-C, Tran LT, Zhang P (2005) Process for preparing substituted 5-amino-pyrazolo-[4,3-e]-1,2,4-triazolo[1,5-c] pyrimidines. Patent WO 2005054245

    Google Scholar 

  • Lane JR, Klein Herenbrink C, van Westen GJP et al (2012) A novel nonribose agonist, LUF5834, engages residues that are distinct from those of adenosine-like ligands to activate the adenosine A2A receptor. Mol Pharmacol 81:475–487

    Article  PubMed  CAS  Google Scholar 

  • Langmead CJ, Andrews SP, Congreve M et al (2012) Identification of novel adenosine A2A receptor antagonists by virtual screening. J Med Chem 55:1904–1909

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lanier MC, Slee DH, Luo Z et al (2008) Substituted pyrimidines as adenosine receptor antagonists. Patent WO 2008070661

    Google Scholar 

  • Lanier MC, Moorjani M, Luo Z et al (2009) N-[6-Amino-2-(heteroaryl)pyrimidin-4-yl]acetamides as A2A receptor antagonists with improved drug like properties and in vivo efficacy. J Med Chem 52:709–717

    Article  PubMed  CAS  Google Scholar 

  • Lenselink EB, Beuming T, Sherman T, van Vlijmen HWT et al (2014) Selecting an optimal number of binding site waters to improve virtual screening enrichments against the adenosine A2A receptor. J Chem Inf Model 54:1737–1746

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Figler RA, Glynis Kolling G et al (2012) Adenosine A2A receptor activation reduces recurrence and mortality from Clostridium difficile infection in mice following vancomycin treatment. BMC Infect Dis 12:342

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Luthra PM, Mishra CB, Jha PK et al (2010) Synthesis of novel 7-imino-2-thioxo-3,7-dihydro-2H-thiazolo [4,5-d] pyrimidine derivatives as adenosine A2A receptor antagonists. Bioorg Med Chem Lett 20:1214–1218

    Article  PubMed  CAS  Google Scholar 

  • Mantell SJ, Stephenson PT, Monaghan SM et al (2009) SAR of a series of inhaled A2A agonists and comparison of inhaled pharmacokinetics in a preclinical model with clinical pharmacokinetic data. Bioorg Med Chem Lett 19:4471–4475

    Article  PubMed  CAS  Google Scholar 

  • Mantri M, de Graaf O, van Veldhoven J et al (2008) 2-Amino-6-furan-2-yl-4-substituted nicotinonitriles as A2A adenosine receptor antagonists. J Med Chem 51:4449–4455

    Article  PubMed  CAS  Google Scholar 

  • Mason JS, Bortolato A, Weiss DR et al (2013) High end GPCR design: crafted ligand design and druggability analysis using protein structure, lipophilic hotspots and explicit water networks. Silico Pharmacol 1:23

    Article  Google Scholar 

  • Massink A, Louvel J, Adlere I, van Veen C, Huisman BJ, Dijksteel GS, Guo D, Lenselink EB, Buckley BJ, Matthews H, Ranson M, Kelso M, IJzerman AP (2016) 5’-substituted amiloride derivatives as allosteric modulators binding in the sodium ion pocket of the adenosine A2A receptor. J Med Chem 59:4769–4777

    Google Scholar 

  • Matricon P, Ranganathan A, Warnick E et al (2017) Fragment optimization by molecular dynamics free energy calculations for GPCRs: probing druggable subpockets of the A2A adenosine receptor binding site. Sci Rep 7:6398

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mediavilla-Varela M, Castro J, Chiappori A et al (2017) A novel antagonist of the immune checkpoint protein adenosine A2A receptor restores tumor-infiltrating lymphocyte activity in the context of the tumor microenvironment. Neoplasia 19:530–536

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Minetti P, Tinti MO, Carminati P et al (2005) 2-n-butyl-9-methyl-8-[1,2,3]triazol-2-yl-9H-purin-6-ylamine and analogues as A2A adenosine receptor antagonists. Design, synthesis, and pharmacological characterization. J Med Chem 48:6887–6896

    Article  PubMed  CAS  Google Scholar 

  • Mishra CB, Barodia SK, Prakash A et al (2010) Novel 8-(furan-2-yl)-3-substituted thiazolo [5,4-e][1,2,4] triazolo[1,5-c] pyrimidine-2(3H)-thione derivatives as potential adenosine A2A receptor antagonists. Bioorg Med Chem 18:2491–2500

    Article  PubMed  CAS  Google Scholar 

  • Montesinos MC, Desai-Merchant A, Cronstein BN (2015) Promotion of wound healing by an agonist of adenosine A2A receptor is dependent on tissue plasminogen activator. Inflammation 38:2036–2041

    Article  PubMed  CAS  Google Scholar 

  • Moorman AR (2008) Preparation of pyrrolotriazolopyrimidine derivatives as adenosine A2A receptor antagonists. Patent WO 2008121748

    Google Scholar 

  • Moscoso-Castro M, LĂłpez-Cano M, Gracia-Rubio I et al (2017) Cognitive impairments associated with alterations in synaptic proteins induced by the genetic loss of adenosine A2A receptors in mice. Neuropharmacology 126:48–57

    Article  PubMed  CAS  Google Scholar 

  • MĂĽller CE, Jacobson KA (2011) Recent developments in adenosine receptor ligands and their potential as novel drugs. Biochim Biophys Acta 1808:1290–1308

    Article  PubMed  CAS  Google Scholar 

  • Nakamura T, Shiohara H, Terao Y et al (2005) Novel benzofuran derivative, medicinal composition containing the same, and uses of these. Patent WO2005073210

    Google Scholar 

  • Nell P, Huebsch W, Albrecht-Kuepper B et al (2009) Preparation of aryl oxazoles as A2A receptor inhibitors for the treatment of cardiovascular diseases. Patent WO 2009015776

    Google Scholar 

  • Neustadt BR, Lindo NA, Greenlee WJ et al (2001) Preparation of 5-amino-pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c] pyrimidines as adenosine A2A receptor antagonists. Patent WO 2001092264

    Google Scholar 

  • Neustadt BR, Hao J, Lindo N et al (2007) Potent, selective, and orally active adenosine A2A receptor antagonists: arylpiperazine derivatives of pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidines. Bioorg Med Chem Lett 17:1376–1380

    Article  PubMed  CAS  Google Scholar 

  • Neustadt BR, Liu H, Hao J, Greenlee WJ et al (2009) Potent and selective adenosine A2A receptor antagonists: 1,2,4-Triazolo[1,5-c]pyrimidines. Bioorg Med Chem Lett 19:967–971

    Article  PubMed  CAS  Google Scholar 

  • Norcross RD (2004) Preparation of benzoxazole derivatives as adenosine receptor ligands. Patent WO 2004063177

    Google Scholar 

  • Norcross RD (2005) A preparation of thiazolopyridine derivatives with good affinity to A2A receptor and high selectivity toward A1 and A3 receptors. Patent US 20050065151

    Google Scholar 

  • Ohta A, Gorelik E, Prasad SJ et al (2006) A2A adenosine receptor protects tumors from antitumor T cells. Proc Natl Acad Sci U S A 103:13132–13137

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Orr AG, Lo I, Schumacher H et al (2018) Istradefylline reduces memory deficits in aging mice with amyloid pathology. Neurobiol Dis 110:29–36

    Article  PubMed  CAS  Google Scholar 

  • Peng H, Kumaravel G, Yao G et al (2004) Novel bicyclic piperazine derivatives of triazolotriazine and triazolopyrimidines as highly potent and selective adenosine A2A receptor antagonists. J Med Chem 47:6218–6229

    Article  PubMed  CAS  Google Scholar 

  • Perez-Lloret S, Merello M (2014) Two new adenosine receptor antagonists for the treatment of Parkinson’s disease: istradefylline versus tozadenant. Expert Opin Pharmacother 15:1097–1007

    Article  PubMed  CAS  Google Scholar 

  • Petrelli R, Torquati I, Kachler S et al (2015) 5’-C-ethyl-tetrazolyl-N6-substituted adenosine and 2-chloroadenosine derivatives as highly potent dual acting A1 adenosine receptor agonists and A3 adenosine receptor antagonists. J Med Chem 58:2560–2566

    Article  PubMed  CAS  Google Scholar 

  • Pinna A (2014) Adenosine A2A receptor antagonists in Parkinson’s disease: progress in clinical trials from the newly approved istradefylline to drugs in early development and those already discontinued. CNS Drugs 28:455–474

    Article  PubMed  CAS  Google Scholar 

  • Pinna A, Tronci E, Schintu N et al (2010) A new ethyladenine antagonist of adenosine A2A receptors: behavioral and biochemical characterization as an antiparkinsonian drug. Neuropharmacology 58:613–623

    Article  PubMed  CAS  Google Scholar 

  • Prasad RN, Bariana DS, Fung A et al (1980) Modification of the 5′ position of purine nucleosides. 2. Synthesis and some cardiovascular properties of adenosine-5′-(N-substituted) carboxamides. J Med Chem 23:313–319

    Article  PubMed  CAS  Google Scholar 

  • Preti D, Baraldi PG, Saponaro G et al (2015) Design, synthesis, and biological evaluation of novel 2-((2-(4-(substituted)phenylpiperazin-1-yl)ethyl)amino)-5-N-ethylcarboxamidoaden osines as potent and selective agonists of the A2A adenosine receptor. J Med Chem 58:3253–3267

    Article  PubMed  CAS  Google Scholar 

  • Rieger JM, Brown ML, Sullivan GW et al (2001) Design, synthesis, and evaluation of novel A2A adenosine receptor agonists. J Med Chem 44:531–539

    Article  PubMed  CAS  Google Scholar 

  • RodrĂ­guez A, Guerrero A, Gutierrez-de-Terán H et al (2015a) New selective A2A agonists and A3 antagonists for human adenosine receptors: synthesis, biological activity and molecular docking studies. Med Chem Commun 6:1178–1185

    Article  CAS  Google Scholar 

  • RodrĂ­guez D, Gao ZG, Moss SM et al (2015b) Molecular docking screening using agonist-bound GPCR structures: probing the A2A adenosine receptor. J Chem Inf Model 55:550–563

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • RodrĂ­guez D, Chakraborty S, Warnick E et al (2016) Structure-based screening of uncharted chemical space for atypical adenosine receptor agonists. ACS Chem Biol 11:2763–2772

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rucktooa P, Cheng RKY, Segala E et al (2018) Towards high throughput GPCR crystallography: in Meso soaking of adenosine A2A receptor crystals. Sci Rep 8:41

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sabbadin D, Ciancetta A, Moro S (2014) Perturbation of fluid dynamics properties of water molecules during G protein-coupled receptor–ligand recognition: the human A2A adenosine receptor as a key study. J Chem Inf Model 54:2846–2855

    Article  PubMed  CAS  Google Scholar 

  • Saku O, Saki M, Kurokawa M et al (2010a) Synthetic studies on selective adenosine A2A receptor antagonists: synthesis and structure-activity relationships of novel benzofuran derivatives. Bioorg Med Chem Lett 20:1090–1093

    Article  PubMed  CAS  Google Scholar 

  • Saku O, Saki M, Kurokawa M et al (2010b) Synthetic studies on selective adenosine A2A receptor antagonists. Part II: synthesis and structure–activity relationships of novel benzofuran derivatives. Bioorg Med Chem Lett 20:3768–3771

    Article  PubMed  CAS  Google Scholar 

  • Sams AG, Mikkelsen GK, Larsen MN et al (2011) Discovery of phosphoric acid mono-{2-[(E/Z)-4-(3,3-dimethyl-butyrylamino)- 3,5-difluorobenzoylimino]-thiazol-3-ylmethyl} Ester (Lu AA47070): a phosphonooxymethylene prodrug of a potent and selective hA2A receptor antagonist. J Med Chem 54:751–764

    Article  PubMed  CAS  Google Scholar 

  • Sauer R, Maurinsh J, Reith U et al (2000) Water-soluble phosphate prodrugs of 1-propargyl-8-styrylxanthine derivatives, A2A-selective adenosine receptor antagonists. J Med Chem 43:440–448

    Article  PubMed  CAS  Google Scholar 

  • Schulte G, Fredholm BB (2003) Signalling from adenosine receptors to mitogen-activated protein kinases. Cell Signal 15:813–827

    Article  PubMed  CAS  Google Scholar 

  • Segala E, Guo D, Cheng RKY et al (2016) Controlling the dissociation of ligands from the adenosine A2A receptor through modulation of salt bridge strength. J Med Chem 59:6470–6479

    Article  PubMed  CAS  Google Scholar 

  • Shah U, Boyle CD, Chackalamannil S et al (2008a) Biaryl and heteroaryl derivatives of SCH 58261 as potent and selective adenosine A2A receptor antagonists. Bioorg Med Chem Lett 18:4199–4203

    Article  PubMed  CAS  Google Scholar 

  • Shah U, Lankin CM, Boyle CD et al (2008b) Design, synthesis, and evaluation of fused heterocyclic analogs of SCH 58261 as adenosine A2A receptor antagonists. Bioorg Med Chem Lett 18:4204–4209

    Article  PubMed  CAS  Google Scholar 

  • Shimada J, Suzuki F, Nonaka H et al (1992) (E)-1,3-Dialkyl-7-methyl-8-(3,4,5-trimethoxystyryl)xanthines: potent and selective adenosine A2 antagonists. J Med Chem 35:2342–2345

    Article  PubMed  CAS  Google Scholar 

  • Shinkre BA, Kumar TS, Gao ZG et al (2010) Synthesis and evaluation of 1,2,4-triazolo[1,5-c]pyrimidine derivatives as A2A receptor-selective antagonists. Bioorg Med Chem Lett 20:5690–5694

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shiohara H, Nakamura T, Mukaiyama H et al (2006) Preparation of furopyridine derivatives as adenosine A2A receptor antagonists. Patent WO 2006137350

    Google Scholar 

  • Shook BC, Jackson PF (2011) Adenosine A2A receptor antagonists and Parkinson’s disease. ACS Chem Neurosci 2:555–567

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shook BC, Charavarty D, Barbay JK et al (2011) Aminomethyl substituted thieno[2,3-d]pyrimidines as adenosine A2A receptor antagonists. Med Chem Commun 2:950–966

    Article  CAS  Google Scholar 

  • Shook BC, Chakravarty D, Barbay JK et al (2013) Substituted thieno[2,3-d]pyrimidines as adenosine A2A receptor antagonists. Bioorg Med Chem Lett 23:2688–2691

    Article  PubMed  CAS  Google Scholar 

  • Siddiqi SM, Jacobson KA, Esker JL et al (1995) Search for new purine- and ribose-modified adenosine analogues as selective agonists and antagonists at adenosine receptors. J Med Chem 38:1174–1188

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Silverman LS, Caldwell JP, Greenlee WJ et al (2007) 3H-[1,2,4]-Triazolo[5,1-i]purin-5-amine derivatives as adenosine A2A antagonists. Bioorg Med Chem Lett 17:1659–1662

    Article  PubMed  CAS  Google Scholar 

  • Simola N, Fenu S, Baraldi PG et al (2004) Blockade of adenosine A2A receptors antagonizes parkinsonian tremor in the rat tacrine model by an action on specific striatal regions. Exp Neurol 189:182–188

    Article  PubMed  CAS  Google Scholar 

  • Simola N, Fenu S, Baraldi PG et al (2008) Blockade of globus pallidus adenosine A2A receptors displays antiparkinsonian activity in 6-hydroxydopamine-lesioned rats treated with D1 or D2 dopamine receptor agonists. Synapse 62:345–351

    Article  PubMed  CAS  Google Scholar 

  • Slee DH, Chen Y, Zhang X et al (2008a) 2-amino-N-pyrimidin-4-ylacetamides as A2A receptor antagonists: 1. Structure-activity relationships and optimization of heterocyclic substituents. J Med Chem 51:1719–1729

    Article  PubMed  CAS  Google Scholar 

  • Slee DH, Moorjani M, Zhang X et al (2008b) 2-amino-N-pyrimidin-4-ylacetamides as A2A receptor antagonists: 2. Reduction of hERG activity, observed species selectivity, and structure-activity relationships. J Med Chem 51:1730–1739

    Article  PubMed  CAS  Google Scholar 

  • Slee DH, Zhang X, Moorjani M et al (2008c) Identification of novel, water-soluble, 2-amino- N -pyrimidin-4-yl Acetamides as A2A receptor antagonists with in vivo efficacy. J Med Chem 51:400–406

    Article  PubMed  CAS  Google Scholar 

  • Squarcialupi L, Colotta V, Catarzi D et al (2014) 7-Amino-2-phenylpyrazolo[4,3-d]pyrimidine derivatives: structural investigations at the 5-position to target human A1 and A2A adenosine receptors. Molecular modeling and pharmacological studies A1 and A2A adenosine receptor antagonists Pyrazolo[4,3-d]pyrimidines dual A1/A2A adenosine receptor antagonists Ligandeadenosine receptor modeling studies. Eur J Med Chem 84:614–627

    Article  PubMed  CAS  Google Scholar 

  • Todde S, Moresco RM, Simonelli P et al (2000) Design, radiosynthesis, and biodistribution of a new potent and selective ligand for in vivo imaging of the adenosine A2A receptor system using positron emission tomography. J Med Chem 43:4359–4362

    Article  PubMed  CAS  Google Scholar 

  • Tosh DK, Phan K, Gao Z-G et al (2012) Optimization of adenosine 5′-Carboxamide derivatives as adenosine receptor agonists using structure-based ligand design and fragment screening. J Med Chem 55:4297–4308

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ueeda M, Thompson RD, Arroyo LH et al (1991) 2-Alkoxyadenosines: potent and selective agonists at the coronary artery A2 adenosine receptor. J Med Chem 34:1334–1339

    Article  PubMed  CAS  Google Scholar 

  • Ukena D, Jacobson KA, Kirk KL et al (1986) A [3H]amine congener of 1,3-dipropyl-8-phenylxanthine. A new radioligand for A2 adenosine receptors of human platelets. FEBS Lett 199:269–274

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Galen PJM, van Bergen AH, Gallo-Rodriguez C et al (1994) A binding site model and structure-activity relationships for the rat A3 adenosine receptor. Mol Pharmacol 45:1101–1111

    PubMed  Google Scholar 

  • van Tilburg EW, Gremmen M, von Frijtag Drabbe Kunzel J et al (2003) 2,8-Disubstituted adenosine derivatives as partial agonists for the adenosine A2A receptor. Bioorg Med Chem 11:2183–2192

    Article  PubMed  CAS  Google Scholar 

  • van Waarde A, Dierckx RAJO, Zhou X et al (2018) Potential therapeutic applications of adenosine A2A receptor ligands and opportunities for A2A receptor imaging. Med Res Rev 38:5–56

    Article  PubMed  CAS  Google Scholar 

  • Visentin S, De Nuccio C, Bernardo A et al (2013) The stimulation of adenosine A2A receptors ameliorates the pathological phenotype of fibroblasts from Niemann-pick type C patients. J Neurosci 33:15388–15393

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Vollmann K, Qurishi R, Hockemeyer J et al (2008) Synthesis and properties of a new water-soluble prodrug of the adenosine A2A receptor antagonist MSX-2. Molecules 13:348–359

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Vu CB, Pan D, Peng B et al (2004a) Studies on adenosine A2A receptor antagonists: comparison of three core heterocycles. Bioorg Med Chem Lett 14:4831–4834

    Article  PubMed  CAS  Google Scholar 

  • Vu CB, Peng B, Kumaravel G et al (2004b) Piperazine derivatives of [1,2,4]triazolo[1,5-a][1,3,5]triazine as potent and selective adenosine A2A receptor antagonists. J Med Chem 47:4291–4299

    Article  PubMed  CAS  Google Scholar 

  • Vu CB, Shields P, Peng B et al (2004c) Triamino derivatives of triazolotriazine and triazolopyrimidine as adenosine A2A receptor antagonists. Bioorg Med Chem Lett 14:4835–4838

    Article  PubMed  CAS  Google Scholar 

  • Weiss SM, Benwell K, Cliffe IA et al (2003) Discovery of nonxanthine adenosine A2A receptor antagonists for the treatment of Parkinson’s disease. Neurology 61:101–106

    Article  CAS  Google Scholar 

  • Welihinda AA, Amento EP (2014) Positive allosteric modulation of the adenosine A2A receptor attenuates inflammation. J Inflamm 11:37

    Google Scholar 

  • Xu F, Wu H, Katritch V et al (2011) Structure of an agonist-bound human A2A adenosine receptor. Science 2011(332):322–327

    Article  CAS  Google Scholar 

  • Yadav R, Bansal R, Kachler S et al (2014) Novel 8-(p-substituted-phenyl/benzyl)xanthines with selectivity for the A2A adenosine receptor possess bronchospasmolytic activity. Eur J Med Chem 75:327–335

    Article  PubMed  CAS  Google Scholar 

  • Yang M, Soohoo D, Soelaiman S et al (2007) Characterization of the potency, selectivity, and pharmacokinetic profile for six adenosine A2A receptor antagonists. Naunyn Schmiedeberg's Arch Pharmacol 375:133–144

    Article  CAS  Google Scholar 

  • Yang Z, Li X, Ma H et al (2014) Replacement of amide with bioisosteres led to a new series of potent adenosine A2A receptor antagonists. Bioorg Med Chem Lett 24:152–155

    Article  PubMed  CAS  Google Scholar 

  • Yang Z, Li L, Zheng J et al (2016) Identification of a new series of potent adenosine A2A receptor antagonists based on 4-Amino-5-carbonitrile pyrimidine template for the treatment of Parkinson’s disease. ACS Chem Neurosci 7:1575–1584

    Article  PubMed  CAS  Google Scholar 

  • Yao G, Haque S, Sha L et al (2005) Synthesis of alkyne derivatives of a novel triazolopyrazine as A2A adenosine receptor antagonists. Bioorg Med Chem Lett 15:511–515

    Article  PubMed  CAS  Google Scholar 

  • Ye L, Eps NV, Zimmer M et al (2016) Activation of the A2A adenosine G-protein-coupled receptor by conformational selection. Nature 533:265–268

    Article  PubMed  CAS  Google Scholar 

  • Young A, Mittal D, Stagg J et al (2014) Targeting cancer-derived adenosine: new therapeutic approaches. Cancer Discov 4:879–888

    Article  PubMed  CAS  Google Scholar 

  • Yuan G, Jones GB (2014) Towards next generation adenosine A2A receptor antagonists. Curr Med Chem 21:3918–3935

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Tellew JE, Luo Z et al (2008) Lead optimization of 4-acetylamino-2-(3,5-dimethylpyrazol-1-yl)-6-pyridylpyrimidines as A2A adenosine receptor antagonists for the treatment of Parkinson’s disease. J Med Chem 51:7099–7110

    Article  PubMed  CAS  Google Scholar 

  • Zheng J, Yang Z, Li X et al (2014) Optimization of 6-Heterocyclic-2-(1 H -pyrazol-1-yl)- N -(pyridin-2-yl)pyrimidin-4-amine as potent adenosine A2A receptor antagonists for the treatment of Parkinson’s disease. ACS Chem Neurosci 5:674–682

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou G, Aslanian R, Gallo G et al (2016) Discovery of aminoquinazoline derivatives as human A2A adenosine receptor antagonists. Bioorg Med Chem Lett 26:1348–1354

    Article  PubMed  CAS  Google Scholar 

  • Zhukov A, Andrews SP, Errey JC et al (2011) Biophysical mapping of the adenosine A2A receptor. J Med Chem 54:4312–4323

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zúñiga-RamĂ­rez C, Micheli F (2013) Preladenant: an adenosine A2A receptor antagonist for Parkinson’s disease. Future Neurol 8:639–648

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth A. Jacobson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baraldi, S., Baraldi, P.G., Oliva, P., Toti, K.S., Ciancetta, A., Jacobson, K.A. (2018). A2A Adenosine Receptor: Structures, Modeling, and Medicinal Chemistry. In: Borea, P., Varani, K., Gessi, S., Merighi, S., Vincenzi, F. (eds) The Adenosine Receptors. The Receptors, vol 34. Humana Press, Cham. https://doi.org/10.1007/978-3-319-90808-3_5

Download citation

Publish with us

Policies and ethics