Skip to main content
Log in

The reaction of 2-amino-4\(H\)-pyrans with \(N\)-bromosuccinimide

  • Full-Length Paper
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

The reaction of racemic 2-amino-4\(H\)-pyrans, such as 3-amino-1-aryl-1\(H\)-benzo\([f]\)chromene-2-carbonitriles, with \(N\)-bromosuccinimide (NBS), in \(\hbox {CH}_{2}\hbox {Cl}_{2}\), at room temperature, is a very quick, regio, stereoselective, and high yielding process, affording major racemic \((1S,2S)\)-2-bromo-3-imino-benzo\([f]\)chromene or racemic \((1S,2S)\)-2-bromo-3-(bromoimino)-benzo\([f]\)chromene derivatives, when using 1.0 or 2.2 equivalents of NBS, respectively. This reaction, extended to isomeric 2-amino-4-aryl-4\(H\)-benzo\([h]\)chromene-3-carbonitriles, showed an unexpected reactivity, affording racemic (3\(S\),4\(S)\)-3-bromo-2-(bromoimino)-benzo\([h]\)chromene-3-carbonitriles or 2-oxo-2\(H\)-benzo\([h]\)chromene-3-carbonitriles, when using 2.2 or 1.0 equivalents of NBS, respectively. The reaction of alkyl 6-amino-5-cyano-2-methyl-4\(H\)-pyran-3-carboxylates has yielded unstable racemic (3\(S\),4\(S)\)-alkyl 3-bromo-2-(bromoimino)-3-cyano-6-methyl-3,4-dihydro-2\(H\)-pyran-5-carboxylates. The mechanism of these reactions has been investigated by computational methods.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Scheme 3
Scheme 4
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 5
Scheme 6
Scheme 7
Scheme 8

Similar content being viewed by others

Notes

  1. We thank one of the reviewers for suggesting us to carry out this experiment.

References

  1. Mandha SR, Alla Bommena MVR, Nanubolu JB, Lingala SK, Yarasi S (2012) Oxidative difunctionalization of 2-amino-4\(H\)-pyrans in iodobenzene diacetate and \(N\)-chlorosuccinimide: reactivity, mechanistic insights, and DFT calculations. J Org Chem 77:10648–10654. doi: 10.1021/jo301801b

    Article  CAS  PubMed  Google Scholar 

  2. Silva D, Samadi A, Infantes L, Carreiras MC, Marco-Contelles J (2010) Synthesis of \((E)\)-diethyl 6,6\(^{\prime }\)-(diazene-1,2-diyl)bis(5-cyano-2-methyl-4-phenylnicotinates), a new type of 2,2\(^{\prime }\)-azopyridine dye. Tetrahedron Lett 51:6278–6281. doi: 10.1016/j.tetlet.2010.09.095

    Article  Google Scholar 

  3. Martínez-Grau A, Marco JL (1997) Friedländer reaction on 2-amino-3-cyano-4\(H\)-pyrans: synthesis of derivatives of 4\(H\)-pyran [2,3-b] quinoline, new tacrine analogues. Bioorg Med Chem Lett 7:3165–3170. doi: 10.1016/S0960-894X(97)10165-2

    Article  Google Scholar 

  4. Esquivias-Pérez M, Maalej E, Romero A, Chabchoub F, Samadi A, Marco-Contelles J, Oset-Gasque MJ (2013) Nontoxic and neuroprotective \(\beta \)-naphthotacrines for Alzheimer’s Disease. Chem Res Toxicol 26:986–992. doi:10.1021/tx400138s

  5. León R, García AG, Marco-Contelles J (2013) Recent advances in the multitarget-directed ligands approach for the treatment of Alzheimer’s disease. Med Res Rev 33:139–189. doi:10.1002/med.20248

    Article  PubMed  Google Scholar 

  6. Elagamey AGA, Sawllim SZ, El-Taweel FMA, Elnagdi MH (1988) Nitriles in heterocyclic synthesis: novel syntheses of benzo[b]pyrans, naphtho[1,2-b]pyrans, naphtho[2,1-b]pyrans, pyrano[3,2-h]quinolines and pyrano[3,2-c]quinolones. Coll Czech Chem Commun 53:1534–1538. doi:10.1135/cccc19881534

    Article  CAS  Google Scholar 

  7. Praly JP, Senni D, Faure R, Descotes G (1995) Synthesis and structure of bromo glycosyl imines readily obtained from protected glycosyl azides. Tetrahedron 51:1697–1708. doi:10.1016/0040-4020(94)01036-Y

    Article  CAS  Google Scholar 

  8. Fürstner A, Praly JP (1994) Conversion of glycosyl azides via \(N\)-bromoglycosylimines to aldononitriles. Angew Chem Int Ed Engl 33:751–753. doi: 10.1002/anie.199407511

    Article  Google Scholar 

  9. Abdel-Latif FF (1990) Heterocyclic synthesis through reactions of nucleophiles with acrylonitriles. Part XI. A convenient one-pot synthesis of 4H-chromenes. Ind J Chem Sect B 29B:664–666 ISSN:0376–4699

    CAS  Google Scholar 

  10. McCoy JG, Marugán JJ, Liu K, Zheng W, Southall N, Huang W, Heilig M, Austin CP (2010) Selective modulation of Gq/Gs pathways by naphtho pyrano pyrimidines as antagonists of the neuropeptide S receptor. ACS Chem Neurosci 1:559–574. doi:10.1021/cn100040h

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Messaad M, Chabchoub F, Ennigrou R, Salem M (2008) Action du disulfure de carbone et du phenylthioisocyanate sur des derives naphtopyraniques: Obtention des naphtopyranopyrimidodithiones et des naphtopyranopyrimidothiones. Phosphorus Sulfur 83:1145–1151. doi:10.1080/10426500701586780

    Article  Google Scholar 

  12. Balalaie S, Ramezanpour S, Bararjanian M, Gross JH (2008) DABCO-catalyzed efficient synthesis of naphthopyran derivatives via one-pot three-component condensation reaction at room temperature. Synth Commun 38:1078–1089. doi:10.1080/00397910701862865

    Article  CAS  Google Scholar 

  13. Ballini R, Bosica G, Conforti ML, Maggi R, Mazzacani A, Righi P, Sartori G (2001) Three-component process for the synthesis of 2-amino-2-chromenes in aqueous media. Tetrahedron 57:1395–1398. doi:10.1016/S0040-4020(00)01121-2

    Article  CAS  Google Scholar 

  14. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JAJr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision C.01. Gaussian Inc., Wallingford

  15. Wiberg KB (1968) Application of the pople-santry-segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane. Tetrahedron 24:1083–1096. doi:10.1016/0040-4020(68)88057-3

    Article  CAS  Google Scholar 

  16. Akdag A, McKee ML, Worley SD (2006) Mechanism of formation of biocidal imidazolidin-4-one derivatives: an ab initio density-functional theory study. J Phys Chem A 110:7621–7627. doi:10.1021/jp060879q

    Article  CAS  PubMed  Google Scholar 

  17. Maalej E, Chabchoub F, Oset-Gasque MJ, Esquivias-Pérez M, González MP, Monjas L, Pérez C, de los Ríos C, Rodríguez-Franco MI, Iriepa I, Moraleda I, Chioua M, Romero A, Marco-Contelles J, Samadi A (2012) Synthesis, biological assessment, and molecular modeling of racemic 7-aryl-9,10,11,12-tetrahydro-7\(H\)-benzo[7,8]chromeno[2,3-\(b\)]quinolin-8-amines as potential drugs for the treatment of Alzheimer’s disease. Eur J Med Chem 54:750–763. doi: 10.1016/j.ejmech.2012.06.038

    Article  CAS  PubMed  Google Scholar 

  18. Chandrasekhar S, Harvey AK, Dell CP, Ambler SJ, Smith CW (1995) Identification of a novel chemical series that blocks interleukin-1-stimulated metalloprotease activity in chondrocytes. J Pharmacol Exp Ther 273:1519–1528 ISSN:0022–3565

  19. Wang XS, Shi DQ, Tu SJ (2003) Synthesis of 2-aminochromene derivatives catalyzed by \(\text{ KF/Al }_{2}\text{ O }_{3}\). Chin J Chem 21:1114–1117. doi: 10.1002/cjoc.20030210903

    Article  CAS  Google Scholar 

  20. Bloxham J, Dell CP, Smith CW (1994) Preparation of some new benzylidenemalononitriles by an \(\text{ S }_{{\rm N}}\text{ Ar }\) reaction: application to naphtho[1,2-\(b\)]pyran synthesis. Heterocycles 38:399–408. doi: 10.3987/COM-93-6594

    Article  CAS  Google Scholar 

  21. Banothu J, Velpula R, Gali R, Bavantula R, Crooks PA (2013) Highly efficient conversion of fused 2-amino-4-aryl-4\(H\)-chromene-3-carbonitriles into fused 2-oxo-4-aryl-2\(H\)-chromene-3-carbonitriles using Vilsmeier conditions. Tetrahedron Lett 54:3862–3864. doi: 10.1016/j.tetlet.2013.05.030

    Article  CAS  Google Scholar 

  22. Kuthan J, Sebek P, Böhm S (1995) New developments in the chemistry of pyrans. Adv Heterocyclic Chem 62:19–135. doi:10.1016/S0065-2725(08)60421-3

    Article  CAS  Google Scholar 

  23. Marugán M, Martin N, Seoane C, Soto JL (1989) A facile preparation of alkylpyridines from aminopyrans. Liebigs Ann Chem 145–149. doi:10.1002/jlac.198919890129

  24. Elnagdi MH, Ghozlan SAS, Abdelrazek FM, Selim MA (1991) Studies with polyfunctionally substituted heterocycles: synthesis of new thiopyrans, pyridines and pyrans and their fused derivatives with other ring systems. J Chem Res (S):116–117. ISSN:0308–2342

  25. Soto JL, Seoane C, Martín N, Quinteiro M (1984) Synthesis of heterocyclic compounds XXXVI. Preparation of alkyl substituted pyrancarbonitriles. Heterocycles 22:1–6. doi:10.3987/R-1984-01-0001

    Article  CAS  Google Scholar 

  26. Marco JL, de los Ríos C, García AG, Villarroya M, Carreiras MC, Martins C, Eleuterio A, Morreale A, Orozco M, Luque FJ (2004) Synthesis, biological evaluation and molecular modelling of diversely functionalized heterocyclic derivatives as inhibitors of acetylcholinesterase/butyrylcholinesterase and modulators of \(\text{ Ca }^{2+}\) channels and nicotinic receptors. Bioorg Med Chem 12:2199–2218. doi: 10.1016/j.bmc.2004.02.017

    Article  CAS  PubMed  Google Scholar 

  27. Srivastava S, Batra S, Bhaduri AP (1996) A facile acid catalyzed ring transformation of 4H-pyrans to 1,2,3,4-tetrahydropyridin-2-ones and 3,4-dihydronaphtho[1,2-b]pyran-2(H)-ones. Indian J Chem 35B:602–604 ISSN:0376–4699

    CAS  Google Scholar 

  28. Abramenko YT, Borshchev NA, Vsevolozhskaya NB, Pashchenko AV, Promonenkov VK, Sharanin YA (1979) Simple methods for preparing 2-amino-3-cyano-4H-pyrans. Nov Khim Sredstva Zashch Rast 7–11

  29. Ibrahim NS (1986) Activated nitriles in heterocyclic synthesis: a new approach for the synthesis of pyran derivatives. Heterocycles 24:935–938. doi:10.3987/R-1986-04-0935

    Article  CAS  Google Scholar 

  30. Elgemeie GEH, Gohar AEl-KM, Regaila HA, Elfahham HA (1988) Activated nitriles in heterocyclic synthesis: novel syntheses of pyrano[2,3-\(b\)]pyridines and pyrano[2,3-\(d\)]pyrimidines. Arch Pharm 321:131–133. doi: 10.1002/ardp.19883210304

    Article  CAS  Google Scholar 

  31. Hafez EA, Elnagdi MH, Elagamey AGA, El-Taweel FM (1987) Nitriles in heterocyclic synthesis: novel synthesis of benzo[\(c\)]coumarin and of benzo[\(c\)]pyrano[3,2-\(c\)]quinoline derivatives. Heterocycles 26:903–907. doi: 10.3987/R-1987-04-0903

    Article  CAS  Google Scholar 

  32. Sofan MA, El-Taweel FM, Elagamey AGA, Elnagdi MH (1989) Studies on cinnamonitriles: The reaction of cinnamonitriles with cyclopentanone. Liebigs Ann Chem 935–936. doi:10.1002/jlac.198919890246

  33. Abdel-Galil FM, Riad BY, Sherif SM, Elnagdi MH (1982) Activated nitriles in heterocyclic synthesis: a novel synthesis of 4-azoloyl-2-aminoquinolines. Chem Lett 11:1123–1126

  34. Varma RS, Dahiya R (1998) An expeditious and solvent-free synthesis of 2-amino-substituted isoflav-3-enes using microwave irradiation. J Org Chem 63:8038–8041. doi:10.1021/jo980985r

    Article  CAS  Google Scholar 

  35. Kidwai M, Saxena S, Khan MKR, Thukral SS (2005) Aqua mediated synthesis of substituted 2-amino-4\(H\)-chromenes and in vitro study as antibacterial agents. Bioorg Med Chem Lett 15:4295–4298. doi:10.1016/j.bmcl.2005.06.041

  36. Mohr SJ, Chirigos MA, Fahrman FS, Pryor JW (1975) Pyran copolymer as an effective adjuvant to chemotherapy against a murine leukemia and solid tumor. Cancer Res 35:3750–3754

    CAS  PubMed  Google Scholar 

  37. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

  38. Zhao Y, Truhlar D (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120:215–241. doi:10.1007/s00214-007-0310-x

    Article  CAS  Google Scholar 

  39. Cossi M, Rega N, Scalmani G, Barone V (2003) Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J Comput Chem 24:669–681. doi:10.1002/jcc.10189

    Article  CAS  PubMed  Google Scholar 

  40. Takano Y, Houk KN (2005) Benchmarking the conductor-like polarizable continuum model (CPCM) for aqueous solvation free energies of neutral and ionic organic molecules. J Chem Theory Comput 1:70–77. doi:10.1021/ct049977a

    Article  Google Scholar 

  41. Spartan’10, Wavefunction Inc., Irvine, CA, USA (2011)

Download references

Acknowledgments

JMC thanks MINECO for Grant SAF2012-33304, W. Malicka for the preparation of some starting materials. Daniel da Silva thanks EU (COST Action) for support. LI thanks Comunidad de Madrid (BIPEDD-2: S2010-BMD-2457). ES thanks MINECO for grant CTQ2009-10478 and CESGA for generous allocation of computing resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Soriano.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (doc 4518 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samadi, A., Silva, D., Chioua, M. et al. The reaction of 2-amino-4\(H\)-pyrans with \(N\)-bromosuccinimide. Mol Divers 19, 103–122 (2015). https://doi.org/10.1007/s11030-014-9560-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-014-9560-4

Keywords

Navigation