Skip to main content
Log in

Structure–activity relationships of anthocyanidin glycosylation

  • Short Review
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

This paper summarizes the main achievements about the structure–activity relationships of anthocyanidin glycosylation. Anthocyanidin glycosylation is the essential step of anthocyanin biosynthesis and also the prerequisite of the further modifications of anthocyanins, which is jointly characterized by the glycosylation site, the type and number of the glycosyl as well as the glycosidic bond type. It generally enhances the stability, results in the hypsochromic effect and blueing, decreases the bioavailability and anticancer activity, and decreases, increases, or does not change the antioxidant activity of the anthocyanidins or anthocyanins, which is synergetically determined by the glycosylation site and the type and number of the glycosyl. Thereinto, in nature, the blue hues caused by the glycosylation may also be reinforced by the formation of the anthocyanic vacuolar inclusions. This review could provide a reference for the research of the structure-optimizing and function-exploiting of anthocyanins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AVI:

Anthocyanic vacuolar inclusions

COX:

Cyclooxygenase

Cy:

Cyanidin

Dp:

Delphinidin

DPPH:

2,2-Diphenyl-1-picrylhydrazil

FRAP:

Ferric reducing antioxidant potential

HCT:

Human colon tumor

LDL:

Low density lipoprotein

LOX:

Lipoxygenase

MeLo:

Methyl linoleate

Mv:

Malvidin

–OH:

Hydroxyl

ONOO–:

Peroxynitrite anion

ORAC:

Oxygen radical absorbance capacity

Pg:

Pelargonidin

\(\hbox {pK}_\mathrm{H}\) :

Hydration constant

Pn:

Peonidin

Pt:

Petunidin

SAR:

Structure–activity relationship

t-BuOOH:

Tert-butyl hydroperoxide

TEAC:

Trolox- equivalent antioxidant capacity

VDT:

Visual detection threshold

VEGF:

Vascular endothelial growth

VEGFR:

Vascular endothelial growth receptor

\(\varepsilon \) :

Molar extinction coefficient

References

  1. Brouillard R (1982) Chemical structure of anthocyanins. In: Markakis P (ed) Anthocyanins as food colors. Academic Press, New York, pp 1–40

    Google Scholar 

  2. Rein M (2005) Copigmentation reactions and color stability of berry anthocyanins. Ph.D. dissertation, University of Helsinki, Helsinki, Finland

  3. Francis FJ, Markakis PC (1989) Food colorants: anthocyanins. Crit Rev Food Sci Nutr 28:273–314. doi:10.1080/10408398909527503

    Article  CAS  PubMed  Google Scholar 

  4. Martin C, Gerats T (1992) The control of flower coloration. In: Jordan B (ed) Molecular biology of flowers. CIB International, Wallingford, pp 219–255

    Google Scholar 

  5. Lila MA (2004) Anthocyanins and human health: an in vitro investigative approach. J Biomed Biotechnol 5:306–313. doi:10.1155/S111072430440401X

    Article  Google Scholar 

  6. Hatier J-HB, Gould KS (2009) Anthocyanin function in vegetative organs. In: Gould K, Davies K, Winefield C (eds) Anthocyanins: biosynthesis, functions, and applications. Springer Verlag, New York, pp 1–20. doi:10.1007/978-0-387-77335-3

    Google Scholar 

  7. Wang L-S, Carmella S, Keyes R, Kuo C-T, Huang Y-W, Hecht SS, Stoner GD (2012) Anthocyanins and Cancer Prevention. In: Sarkar FH (ed) Nutraceuticals and cancer, Springer, Dordrecht, pp 201-229. doi: 10.1007/978-94-007-2630-7

  8. He J, Giusti MM (2010) Anthocyanins: natural colorants with health-promoting properties. Annu Rev Food Sci Technol 1:163–187. doi:10.1146/annurev.food.080708100754

  9. Jing P, Bomser JA, Schwartz SJ, He J, Magnuson BA, Giusti MM (2008) Structure-function relationships of anthocyanins from various anthocyanin-rich extracts on the inhibition of colon cancer cell growth. J Agric Food Chem 56:9391–9398. doi:10.1021/jf8005917

  10. Wu X, Pittman HE, Prior RL (2006) Fate of anthocyanins and antioxidant capacity in contents of the gastrointestinal tract of weanling pigs following black raspberry consumption. J Agric Food Chem 54:583–589. doi:10.1021/jf052108+

    Article  CAS  PubMed  Google Scholar 

  11. Takeoka G, Dao LT (2002) Anthocyanins. In: Hurst WJ (ed) Methods of Analysis for Functional Foods and Nutraceuticals. CRC Press Inc., Boca Raton, pp 219–241

    Google Scholar 

  12. Jordheim M (2007) Isolation, identification and properties of pyranoanthocyanins and anthocyanin forms. Ph.D. dissertation, University of Bergen, Bergen, Norway

  13. Wu X, Prior RL (2005) Identification and characterization of anthocyanins by HPLC-ESI-MS/MS in common foods in the United States: vegetables, nuts and grains. J Agric Food Chem 53:3101–3113. doi:10.1021/jf0478861

    Article  CAS  PubMed  Google Scholar 

  14. Prior RL, Wu X (2006) Anthocyanins: structural characteristics that result in unique metabolic patterns and biological activities. Free Rad Res 40:1014–1028. doi:10.1080/10715760600758522

  15. Kong J-M, Chia L-S, Goh N-K, Chia TF, Brouillard R (2003) Analysis and biological activities of anthocyanins. Phytochemistry 64:923–933. doi:10.1016/S0031-9422(03)00438-2

  16. Mazza G, Miniati E (1993) Anthocyanins in fruits, vegetables and grains. CRC Press Inc., Boca Raton

    Google Scholar 

  17. Fossen T, Slimestad R, Andersen ØM (2003) Anthocyanins with 4\(^{\prime }\)-glucosidation from red onion, Allium cepa. Phytochemistry 64:1367–1374. doi:10.1016/j.phytochem.08.019

  18. Bjorøy Ø, Fossen T, Andersen ØM (2007) Anthocyanin 3-galactosides from Cornus alba Sibirica with glucosidation of the B-ring. Phytochemistry 68:640–645. doi:10.1016/j.phytochem.2006.11.028

    Article  PubMed  Google Scholar 

  19. Hedin PA, Lamar PL III, Thompson AC, Minyard JP (1968) Isolation and structural determination of 13 flavonoid glycosides in Hibiscus esculentus (okra). Am J Bot 55:431–437

    Article  CAS  PubMed  Google Scholar 

  20. Fossen T, Andersen OM (1999) Delphinidin 3\(^{\prime }\)-galloyl- galactosides from blue flowers of Nymphaea caerulea. Phytochemistry 50:1185–1188. doi:10.1016/S0031-9422(98)00649-9

  21. Saito N, Tatsuzawa F, Miyoshi K, Shigihara A, Honda T (2003) The first isolation of \(C-\)glycosylanthocyanin from the flowers of Tricyrtis formosana. Tetrahedron Lett 44:6821–6823. doi: 10.1016/S0040-4039(03)01747-7

    Article  CAS  Google Scholar 

  22. Tatsuzawa F, Saito N, Miyoshi K, Shinoda K, Shigihara A, Honda T (2004) Diacylated 8-C-glucosylcyanidin 3-glucoside from the flowers of Tricyrtis formosana. Chem Pharm Bull 52:631–633. doi:10.1248/cpb.52.631

    Article  CAS  PubMed  Google Scholar 

  23. Andersen ØM, Jordheim M (2006) The anthocyanins. In: Andersen ØM, Markham KR (eds) Flavonoids: chemistry, biochemistry and applications. CRC Taylor & Francis Group, Boca Raton, London, New York, pp 471–551

    Google Scholar 

  24. Clifford MN (2000) Anthocyanins-nature, occurrence and dietary burden. J Sci Food Agric 80:1063–1072. doi:10.1002/(SICI)1097-0010

  25. Delgado-Vargas F, Paredes-López O (2003) Natural colorants for food and nutraceutical uses. CRC Press, Boca Raton

    Google Scholar 

  26. Escribano-Bailón MT, Santos-Buelga C, Rivas-Gonzalo JC (2004) Anthocyanins in cereals. J Chromatogr A 1054:129–141. doi:10.1016/j.chroma.2004.08.152

    Article  PubMed  Google Scholar 

  27. Wrolstad RE (2004) Anthocyanin pigments-bioactivity and coloring properties. J Food Sci 69:419–421. doi:10.1111/j.1365-2621.2004.tb10709.x

    Article  Google Scholar 

  28. Bruneton J (1995) Pharmacognosy, phytochemistry, medicinal plants, 2nd edn. Tec & Doc - Lavoisier, Paris

    Google Scholar 

  29. Yoshitama K, Kaneshige M, Ishikura N, Araki F, Yahara S, Abe K (1994) A stable reddish purple anthocyanin in the leaf of Gynura aurantiaca cv. ‘Purple Passion’. J Plant Res 107:209–214. doi:10.1007/BF02344246

    Article  CAS  Google Scholar 

  30. Terahara N, Saito N, Honda T, Toki K, Osajima Y (1990) Structure of ternatin A1, the largest ternatin in the major blue anthocyanins from Clitoria ternatea flower. Tetrahedron Lett 31:2921–2924. doi:10.1016/0040-4039(90)80185-O

  31. Kondo T, Suzuki K, Yoshida K, Oki K, Ueda M, Isobe M, Goto T (1991) Structure of cyanodelphin, a tetra-\(p\)-hydroxybenzoated anthocyanin from blue flower of Delphinium hybridum. Tetrahedron Lett 32:6375–6378. doi: 10.1016/0040-4039(91)80173-4

    Article  CAS  Google Scholar 

  32. Strack D, Wray V (1989) Anthocyanins. In: Dey PM, Harborne JB (eds) Methods in plant biochemistry. Academic Press, London, pp 325–356

    Google Scholar 

  33. Křen V (2001) Chemical biology and biomedicine of glycosylated natural compounds. In: Fraser-Reid BO, Tatsuta K, Thiem J (eds) Glycoscience: chemistry and chemical biology I–III. Springer, Berlin; Heidelberg; New York; Barcelona; Hong Kong; London; Milan; Paris; Singapore; Tokyo, pp 2471–2529

    Google Scholar 

  34. van Acker SABE, De Groot MJ, van den Berg DJ, Tromp MNJL, den Kelder GDO, van der Vijgh WJF, Bast A (1996) A quantum chemical explanation of the antioxidant activity of flavonoid. Chem Res Toxicol 9:1305–1312. doi:10.1021/tx9600964

    Article  PubMed  Google Scholar 

  35. Fukumoto L, Mazza G (2000) Assessing antioxidant and prooxidant activity of phenolic compounds. J Agric Food Chem 48:3597–3604. doi:10.1021/jf000220w

    Article  CAS  PubMed  Google Scholar 

  36. Jang YP, Zhou J, Nakanishi K, Sparrow JR (2005) Anthocyanins protect against A2E photooxidation and membrane permeabilization in retinal pigment epithelial cells. Photochem Photobiol 81:529–536. doi:10.1562/2004-12-14-RA-402.1

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Heim KE, Tagliaferro AR, Bobilya DJ (2002) Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J Nutr Biochem 13:572–584. doi:10.1016/S0955-2863(02)00208-5

    Article  CAS  PubMed  Google Scholar 

  38. Kähkönen MP, Heinonen M (2003) Antioxidant activity of anthocyanins and their aglycons. J Agric Food Chem 51:628–633. doi:10.1021/jf025551i

    Article  PubMed  Google Scholar 

  39. Somaatmadja D, Powers JJ, Hamdy MK (1964) Anthocyanins. VI. Chelation studies on anthocyanins and other related compounds. J Food Sci 29:655–660. doi:10.1111/j.1365-2621.1964.tb00426.x

  40. Rice-Evans CA, Miller NJ, Paganga G (1997) Antioxidant properties of phenolic compounds. Trends Plant Sci 2:152–159. doi:10.1016/S1360-1385(97)01018-2

    Article  Google Scholar 

  41. Ojwang LO (2007) Color stability of sorghum 3-deoxyan- thocyanins against sulfite and ascorbic acid degradation; pH influence. M.S. dissertation, University of Missouri-Columbia, Columbia, USA

  42. Timberlake CF, Bridle P (1975) The anthocyanins. In: Harborne JB, Mabry TJ, Mabry H (eds) The flavonoids. Chapman and Hall, London, pp 214–266

    Chapter  Google Scholar 

  43. Raymond B, Dubois J-E (1977) Mechanism of the structural transformations of anthocyanins acidic media. J Am Chem Soc 99:1359–1364. doi:10.1021/ja00447a012

    Article  Google Scholar 

  44. Thomasset S, Teller N, Cai H, Marko D, Berry DP, Steward WP, Gescher AJ (2009) Do anthocyanins and anthocyanidins, cancer chemopreventive pigments in the diet, merit development as potential drugs? Cancer Chemoth Pharm 64:201–211. doi:10.1007/s00280-009-0976-y

  45. Nakajima J, Tanaka Y, Yamazaki M, Saito K (2001) Reaction mechanism from leucoanthocyanidin to anthocyanidin 3-glucoside, a key reaction for coloring in anthocyanin biosynthesis. J Biol Chem 276:25797–25803. doi:10.1074/jbc.M100744200

    Article  CAS  PubMed  Google Scholar 

  46. Davies KM, Schwinn KE (2006) Molecular biology and biotechnology of flavonoid biosynthesis. In: Anderson ØM, Markham KR (eds) Flavonoids: chemistry, biochemistry and applications. CRC Taylor & Francis Group, Boca Raton, London, New York, pp 143–218

    Google Scholar 

  47. Andersen ØM (2002) Anthocyanins. Encyclopedia of life sciences. Macmillan Publishers Ltd, Nature Publishing Group, London

  48. Iacobucci GA, Sweeny JG (1983) The chemistry of anthocyanins, anthocyanidins and related flavylium salts. Tetrahedron 39:3005–3038. doi:10.1016/S0040-4020(01)91542-X

  49. Castañeda-Ovando A, Pacheco-Hernández MdeL (2009) Chemical studies of anthocyanins: a review. Food Chem 113:859–871. doi:10.1016/j.foodchem.2008.09.001

    Article  Google Scholar 

  50. Mazza G, Brouillard R (1987) Recent developments in the stabilization of anthocyanins in food products. Food Chem 25:207–225. doi:10.1016/0308-8146(87)90147-6

    Article  CAS  Google Scholar 

  51. Ichiyanagi T, Oikawa K, Tateyama C, Konishi T (2001) Acid mediated hydrolysis of blueberry anthocyanins. Chem Pharm Bull (Tokyo) 49:114–117. doi:10.1248/cpb.49.114

    Article  CAS  Google Scholar 

  52. Nayak B, Berrios JdeJ, Powers JR, Tang J (2011) Thermal degradation of anthocyanins from purple potato (cv. Purple Majesty) and impact on antioxidant capacity. J Agric Food Chem 59:11040–11049. doi:10.1021/jf201923a

    Article  CAS  PubMed  Google Scholar 

  53. Borkowski T, Szymusiak H, Gliszczynska-Swigło A, Tyrakowska B (2005) The effect of 3-\(O\)-\(\beta \)-glucosylation on structural transformations of anthocyanins. Food Res Int 38:1031–1037. doi: 10.1016/j.foodres.2005.02.020

    Article  CAS  Google Scholar 

  54. Léon A, Robertson A, Robinson R, Seshadri TR (1931) CCCLXXIII—Experiments on the synthesis of anthocyanins. Part VII. The four isomeric \(\beta \)-glucosides of pelargonidin chloride. J Chem Soc 1931:2672–2701. doi: 10.1039/JR9310002672

    Article  Google Scholar 

  55. Furtado P, Figueiredo P, Chaves das NH, Pina F (1993) Photochemical and thermal degradation of anthocyanidins. J Photochem Photobiol A 75:113–118. doi:10.1016/1010-6030(93)80191-B

    Article  CAS  Google Scholar 

  56. Stintzing FC, Stintzing AS, Carle R, Frei B, Wrolstad RE (2002) Color and antioxidant properties of cyanidin-based anthocyanin pigments. J Agric Food Chem 50:6172–6181. doi:10.1021/jf0204811

    Article  CAS  PubMed  Google Scholar 

  57. Stintzing FC, Carle R (2004) Functional properties of anthocyanins and betalins in plants, food, and in human nutrition. Trends Food Sci Technol 15:19–38. doi:10.1016/j.tifs.2003.07.004

    Article  CAS  Google Scholar 

  58. See KS (2008) Establishment of cell suspension culture of Melastoma malabathricum L. for the production of anthocyanin. Ph.D. dissertation, Universiti Sains Malaysia

  59. Starr MS, Francis FJ (1968) Oxygen and ascorbic acid effect on the relative stability of four anthocyanin pigments in cranberry juice. Food Technol 22:1293–1295

    CAS  Google Scholar 

  60. Attoe EL, Von Elbe JH (1981) Photochemical degradation of betanine and selected anthocyanins. J Food Sci 46:1934–1937

    Article  CAS  Google Scholar 

  61. Trošt K, Golc-Wondra A, Prošek M, Milivojevič L (2008) Anthocyanin degradation of blueberry—aronia nectar in glass compared with carton during storage. J Food Sci 73:S405–411. doi:10.1111/j.1750-3841.2008.00909.x

    Article  PubMed  Google Scholar 

  62. Brønnum-Hansen K, Flink JM (1985) Anthocyanin colorants from elderberry (Sambucus nigra L.). 3. Storage stability of the freeze dried product. J Food Technol 20:725–733. doi:10.1111/j.1365-2621.1985.tb01970.x

    Article  Google Scholar 

  63. Wu X, Beecher GR, Holden JM, Haytowitz DB, Gebhardt SE, Prior RL (2006) Concentrations of anthocyanins in common foods in the United States and estimation of normal consumption. J Agric Food Chem 56:4069–4075. doi:10.1021/jf060300l

    Article  Google Scholar 

  64. Harborne JB (1967) Comparative biochemistry of flavonoid compounds. Academic Press, New York

    Google Scholar 

  65. Hoshino T, Goto T (1990) Effects of pH and concentration on the self-association of malvin quinonoidal base-electronic and circular dichroic studies. Tetrahedron Lett 31:1593–1596. doi:10.1016/0040-4039(90)80025-H

    Article  CAS  Google Scholar 

  66. Zhang H, Wang L, Deroles S, Bennet R, Davis K (2006) New insight into the structures and formation of anthocyanic vacuolar inclusion in flower petals. BMC Plant Biol 6:29. doi:10.1186/1471-2229-6-29

    Article  PubMed Central  PubMed  Google Scholar 

  67. Marrs KA, Alfenito MR, Lloyd AM, Walbot V (1995) A glutathione \(S\)-transferase involved in vacuolar transfer encoded by the maize gene Bronze-2. Nature 375:397–400. doi: 10.1038/375397a0

    Article  CAS  PubMed  Google Scholar 

  68. Ono E, Fukuchi-Mizutani M, Nakamura N, Fukui Y, Yonekura-Sakakibara K, Yamaguchi M, Nakayama T, Tanaka T, Kusumi T, Tanaka Y (2006) Yellow flowers generated by expression of the anrone biosynthestic pathway. Proc Natl Acad Sci USA 103:11075–11080. doi:10.1073/pnas.0604246103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Markham KR, Gould KS, Winefield CS, Mitchell KA, Bloor SJ, Boase MR (2000) Anthocyanic vacuolar inclusions-their nature and significance in flower colouration. Phytochemistry 55:327–336. doi:10.1016/S0031-9422(00)00246-6

  70. Degenhardt A, Hofmann S, Knapp H, Winterhalter P (2000) Preparative isolation of anthocyanins by high-speed countercurrent chromatography and application of the color activity concept to red wine. J Agric Food Chem 48:5812–5818. doi:10.1021/jf0007481

    Article  CAS  PubMed  Google Scholar 

  71. Figueiredo P, George F, Tatsuzawa F, Toki K, Saito N, Brouillard R (1999) New features of intramolecular copigmentation by acylated anthocyanins. Phytochemistry 51:125–132. doi:10.1016/S0031-9422(98)00685-2

    Article  CAS  Google Scholar 

  72. Giusti MM, Rodriguez-Saona LE, Wrolstad RE (1999) Molar absorptivity and color characteristics of acylated and non-acylated pelargonidin-based anthocyanins. J Agric Food Chem 47:4631–4637. doi:10.1021/jf981271k

    Article  CAS  PubMed  Google Scholar 

  73. Taylor C, Wallace (2011) Anthocyanins in cardiovascular disease. Adv Nutr 2:1–7. doi:10.3945/an.110.000042

  74. Jing P (2006) Purple corn anthocyanins: chemical structure, chemoprotective activity and structure/function relationships. Ph.D. dissertation, The Ohio State University, USA

  75. Hollman PCH, Bijsman MNCP, van Gameren Y, Cnossen EPJ, de Vries JHM, Katan MB (1999) The sugar moiety is a major determinant of the absorption of dietary flavonoid glycosides in man. Free Radic Res 31:569–573. doi:10.1080/10715769900301141

    Article  CAS  PubMed  Google Scholar 

  76. Milbury PE, Vita JA, Blumberg JB (2010) Anthocyanins are bioavailable in humans following an acute dose of cranberry juice. J Nutr 140:1099–1104. doi:10.3945/jn.109.117168

  77. Mülleder U, Murkovic M, Pfannhauser W (2002) Urinary excretion of cyanidin glycosides. J Biochem Biophys Methods 53:61–66. doi:10.1016/S0165-022X(02)00093-3

    Article  PubMed  Google Scholar 

  78. Nielsen ILF, Dragsted LO, Ravn-Haren G, Freese R, Rasmussen SE (2003) Absorption and excretion of black currant anthocyanins in humans and watanabe heritable hyperlipidemic rabbits. J Agric Food Chem 51: 2813–2820. doi: 10.1021/jf025947u

  79. Ichiyanagi T, Shida Y, Hatano Y, Konishi T (2006) Bioavailability and tissue distribution of anthocyanins in bilberry ( Vaccinium myrtillus L.) extract in rats. J Agric Food Chem 54:6578–6587. doi:10.1021/jf0602370

    Article  CAS  PubMed  Google Scholar 

  80. Ichiyanagi T (2008) Bioavailability and metabolic fate of anthocyanins. ACS Symp Ser 993:48–61

    Article  CAS  Google Scholar 

  81. Williamson G, Plumb GW, Garcia-Conesa MT (1999) Glycosylation, esterification and polymerization of flavonoids and hydroxycin namates: effects on antioxidant properties. Basic Life Sci 66:483–494. doi:10.1007/978-1-4615-4139-4_26

  82. Burda S, Oleszek W (2001) Antioxidant and antiradical activities of flavonoids. J Agric Food Chem 49: 2774–2779. doi: 10.1021/jf001413m

  83. Shipp J, Abdel-Aal E-SM (2010) Food applications and physiological effects of anthocyanins as functional food ingredients. Open Food Sci J 4:7–22. doi:10.2174/1874256401004010007

    Article  CAS  Google Scholar 

  84. Yoshiki Y, Okubo K, Igarashi K (1995) Chemiluminescence of anthocyanins in the presence of acetaldehyde and tert-butyl hydroperoxide. J Biolumin Chemilumin 10:335–338. doi:10.1002/bio.1170100605

    Article  CAS  PubMed  Google Scholar 

  85. Wang H, Cao G, Prior RL (1997) Oxygen radical absorbing capacity of anthocyanins. J Agric Food Chem 45:304–309. doi:10.1021/jf960421t

    Article  CAS  Google Scholar 

  86. Kay C (2004) Analysis of the bioactivity, metabolism, and pharmacokinetics of anthocyanins in humans. Ph.D. dissertation. University of Guelph, Ontario, Canada

  87. Bors W, Heller W, Michel C, Saran M (1990) Flavonoids as antioxidants: determination of radical-scavenging efficiencies. Methods Enzymol 186:343–355. doi:10.1016/0076-6879(90)86128-I

    Article  CAS  PubMed  Google Scholar 

  88. Rice-Evans CA, Miller NJ, Paganga G (1996) Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med 20:933–956. doi:10.1016/0891-5849(95)02227-9

    Article  CAS  PubMed  Google Scholar 

  89. Fukumoto LR, Mazza G (2000) Assessing antioxidant and prooxidant activities of phenolic compounds. J Agric Food Chem 48:3597–3604. doi:10.1021/jf000220w

    Article  CAS  PubMed  Google Scholar 

  90. Seeram NP, Momin RA, Nair MG, Bourquin LD (2001) Cyclooxygenase inhibitory and antioxidant cyanidin glycosides in cherries and berries. Phytomedicine 8:362–369. doi:10.1078/0944-7113-00053

    Article  CAS  PubMed  Google Scholar 

  91. Terahara N, Callebaut A, Ohba R, Nagata T, Ohnishi-Kameyama M, Suzuki M (2001) Acylated anthocyanidin 3-sophoroside-5-glucosides from Ajuga reptans flowers and the corresponding cell cultures. Phytochemistry 58:493–500. doi:10.1016/S0031-9422(01)

  92. Sadilova E, Stintzing FC, Carle R (2006) Anthocyanins, colour and antioxidant properties of eggplant ( Solanum melongena L.) and violet pepper (Capsicum annuum L.) peel extracts. Z. Naturforsch c 61:527–535

    CAS  PubMed  Google Scholar 

  93. Muselík J, García-Alonso M, Martín-López MP, Žemlička M, Rivas-Gonzalo JC (2007) Measurement of antioxidant activity of wine catechins, procyanidins, anthocyanins and pyranoanthocyanins. Int J Mol Sci 8:797–809. doi:10.3390/i8080797

    Article  PubMed Central  Google Scholar 

  94. Zhang Y, Vareed SK, Nair MG (2005) Human tumor cell growth inhibition by nontoxic anthocyanidins, the pigments in fruits and vegetables. Life Sci 76:1465–1472. doi:10.1016/j.lfs.2004.08.025

    Article  CAS  PubMed  Google Scholar 

  95. Lamy S, Blanchette M, Michaud-Levesque J, Lafleur R, Durocher Y, Moghrabi A, Barrette S, Gingras D, Béliveau R (2006) Delphinidin, a dietary anthocyanidin, inhibits vascular endothelial growth factor receptor-2 phosphorylation. Carcinogenesis 27:989–996. doi:10.1093/carcin/bgi279

    Article  CAS  PubMed  Google Scholar 

  96. Dreiseitel A, Schreier P, Oehme A, Locher S, Rogler G, Piberger H, Hajak G, Sand PG (2008) Inhibition of proteasome activity by anthocyanins and anthocyanidins. Biochem Biophys Res Commun 372:57–61. doi:10.1016/j.bbrc.2008.04.140

    Article  CAS  PubMed  Google Scholar 

  97. Hou DX, Ose T, Lin S, Harazoro K, Imamura I, Kubo M, Uto T, Terahara N, Yoshimoto M, Fujii M (2003) Anthocyanidins induce apoptosis in human promyelocytic leukemia cells: structure-activity relationship and mechanisms involved. Int J Oncol 23:705–712

    CAS  PubMed  Google Scholar 

  98. Hou DX, Kai K, Li JJ, Terahara N, Wakamatsu M, Fujii M, Young MR, Colburn N (2004) Anthocyanidins inhibit activator protein 1 activity and cell transformation: structure-activity relationship and molecular mechanisms. Carcinogenesis 25:29–36. doi:10.1093/carcin/bgg184

    Article  CAS  PubMed  Google Scholar 

  99. Kamei H, Kojima T, Koide T, Hasegawa M, Umeda T, Teraba K, Hashimoto Y (1996) Influence of OH group and sugar bonded to flavonoids on flavonoid-mediated suppression of tumor growth in vitro. Cancer Biother Radiopharm 11:247–249. doi:10.1089/cbr.1996.11.247

  100. Koide T, Hashimoto Y, Kamei H, Kojima T, Hasegawa M, Terabe K (1997) Antitumor effect of anthocyanin fractions extracted from red soybeans and red beans in vitro and in vivo. Cancer Biother Radiopharm 12:277–280. doi:10.1089/cbr.1997.12.277

  101. Knaup B, Oehme A, Valotis A, Schreier P (2009) Anthocyanins as lipoxygenase inhibitors. Mol Nutr Food Res 53:617–624. doi:10.1002/mnfr.200800234

    Article  CAS  PubMed  Google Scholar 

  102. Ara KZG, Khan S, Kulkarni TS, Pozzo T, Karlsson EN (2013) Glycoside hydrolases for extraction and modification of polyphenolic antioxidants. In: Shukla P, Pletschke BI (eds) Advances in enzyme biotechnology. Springer, New Delhi, Heidelberg, New York, Dordrecht, London, pp 9–21

    Chapter  Google Scholar 

  103. Křen V (2008) Glycoside vs. aglycon: the role of glycosidic residue in biological activity. In: Fraser-Reid BO, Tatsuta K, Thiem J (eds) Glycoscience: chemistry and chemical biology, 2nd edn. Springer, Verlag, Berlin, Heidelberg, New York, pp 2589–2644

    Google Scholar 

  104. Zabotin AI, Barisheva TS, Larskaya IA, Toroshina TE, Trofimova OV, Hahn MG, Zabotina OA (2005) Oligosaccharin: a new systemic factor in the acquisition of freeze tolerance in winter plants. Plant Biosyst 139:36–41. doi:10.1080/11263500500060601

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China: (i) “Accumulation of Radix notoginseng et Rhizoma optimized by anthocyanin biosynthesis and its mechanism (No. 31060045)”. (ii) “Ecophysiological effects of Panax notoginsing anthocyanins on P. notoginsing (No. 31260091)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Ling Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, C.L., Chen, Z.J., Bai, X.S. et al. Structure–activity relationships of anthocyanidin glycosylation. Mol Divers 18, 687–700 (2014). https://doi.org/10.1007/s11030-014-9520-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-014-9520-z

Keywords

Navigation