Skip to main content
Log in

\(\hbox {FeF}_{3}\) catalyzed cascade C–C and C–N bond formation: synthesis of differentially substituted triheterocyclic benzothiazole functionalities under solvent-free condition

  • Short Communication
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

A series of diverse polyfunctionalized triheterocyclic benzothiazoles were easily prepared in excellent yields via the Biginelli reaction of 2-aminobenzothiazole with substituted benzaldehydes and \(\upalpha \)-methylene ketones using \(\hbox {FeF}_{3}\) as an expeditious catalyst under solvent-free conditions. The protocol provides a practical and straightforward approach toward highly functionalized triheterocyclic benzothiazole derivatives in excellent yields. The reaction was conveniently promoted by \(\hbox {FeF}_{3}\) and the catalyst could be recovered easily after the reaction and reused without any loss of its catalytic activity. The advantageous features of this methodology are high atom economy, operational simplicity, shorter reaction time, convergence, and facile automation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1

References

  1. Singh SP, Mishra RS, Parmar SS, Brumieve SJ (1975) Synthesis of 2-(4 arylthiosemicarbazidocarbonylthio) benzthiazoles and their monamine oxidase inhibitory and anticonvulsant properties. J Pharm Sci 64:1245–1247. doi:10.1002/jps.2600640730

    Article  CAS  PubMed  Google Scholar 

  2. Hutchinson I, Chua MS, Browne HL, Trapani V, Bradshaw TD, Westwell AD, Stevens MFG (2001) Antitumor benzothiazoles. 14. Synthesis and in vitro biological properties of fluorinated 2-(4-aminophenyl) benzothiazoles. J Med Chem 44:1446–1455. doi:10.1021/jm001104n

    Article  CAS  PubMed  Google Scholar 

  3. Singh SP, Vaid PK (1986) Some new 2-(4-butyl-3,5-dimethylpyrazol-1-yl)-6-substituted benzothiazoles, were assessed for their anti-inflammatory activity. Indian J Chem 25B:288–291

    CAS  Google Scholar 

  4. Pande AV, Lokhande SR, Patel MR, Khadse BG (1982) Synthesis and study of 2-substituted alkyl or aryl, amino 6-methyl benzothiazoles as antituberculosis agents. Indian Drugs 19:342–345

    CAS  Google Scholar 

  5. Klusa V (1995) Cerebrocrast, neuroprotectant, cognition enhancer. Drugs Future 20:135–139

    Google Scholar 

  6. Boer R, Gekeler V (1995) Chemosensitizers in tumor therapy: New compounds promise better efficacy. Drugs Future 20:499

    Google Scholar 

  7. Bretzel RG, Bollen CC, Maeser E, Federlin KF (1993) Nephroprotective effects of nitrendipine in hypertensive type I and type II diabetic patients. Am J Kidney Dis 21:S53–S64

    Article  Google Scholar 

  8. Choudhary S, Kini SG, Mubeen M (2013) Antioxidant activity of novel coumarin substituted benzothiazole derivatives. Der Pharma Chemica 5:213–222

    CAS  Google Scholar 

  9. Hopper RJ (1993) 2-(Isopropylsulfinyl)-benzothiazole as a delayed action thiazole accelerator. Rubber Chem Technol 66:623–633. doi:10.5254/1.3538334

  10. Zhang XH, Wong OY, Gao ZQ, Lee CS, Kwong HL, Wu SK (2001) A new blue-emitting benzothiazole derivative for organic electroluminescent devices. Mater Sci Eng B 85:182–185. doi:10.1016/S0921-5107(01)00607-9

    Google Scholar 

  11. Bastug G, Eviolitte C, Marko IE (2012) Functionalized orthoesters as powerful building blocks for the efficient preparation of heteroaromatic bicycles. Org Lett 14:3502–3505. doi:10.1021/ol301472a

    Article  CAS  PubMed  Google Scholar 

  12. Tale RH (2002) Novel synthesis of 2- arylbenzothiazoles mediated by ceric ammonium nitrate (CAN). Org Lett 4:1641–1642. doi:10.1021/ol020027i

    Article  CAS  PubMed  Google Scholar 

  13. Karle M, Knecht W, Xue Y (2012) Discovery of benzothiazole guanidines as novel inhibitors of thrombin and trypsin IV. Bioorg Med Chem Lett 22:4839–4843. doi:10.1016/j.bmcl.2012.05.046

    Article  CAS  PubMed  Google Scholar 

  14. Noolvi MN, Patel HM, Kaur M (2012) Benzothiazoles: search for anticancer agents. Eur J Med Chem 54:447–462. doi:10.1016/j.ejmech.2012.05.028

    Article  CAS  PubMed  Google Scholar 

  15. Jaseer EA, Prasad DJC, Dandapat A, Sekar G (2010) An efficient copper(II)-catalyzed synthesis of benzothiazoles through intramolecular coupling-cyclization of \(N\)-(2-chlorophenyl)benzothioamide. Tetrahedron Lett 51:5009–5012. doi:10.1016/j.tetlet.2010.07.079

    Google Scholar 

  16. Xue WJ, Guo YQ, Gao FF, Li HZ, Wu AX (2013) A novel self-sequence reaction network involving a set of six reactions in one pot: the synthesis of substituted benzothiazoles from aromatic ketones and anilines. Org Lett 15:890–893. doi:10.1021/ol400029t

    Article  CAS  PubMed  Google Scholar 

  17. Trapani G, Franco M, Latrofal A, Carotti A, Genchi G, Serra M, Biggio G, Liso G (1996) Synthesis and benzodiazepine receptor binding of some imidazoand pyrimido[2,1-\(b\)]benzothiazoles. Eur J Med Chem 31:575–587. doi:10.1016/0223-5234(96)89553-5

    Google Scholar 

  18. Sahu PK, Sahu PK, Gupta SK, Thavaselvam D, Agarwal DD (2012) Synthesis and evaluation of antimicrobial activity of 4\(H\)-pyrimido[2,1-\(b\)]benzothiazole, pyrazole and benzylidene derivatives of curcumin. Eur J Med Chem 54:366–378. doi: 10.1016/j.ejmech.2012.05.020

    Article  CAS  PubMed  Google Scholar 

  19. Zhu J (2003) Recent developments in the isonitrile-based multicomponent synthesis of heterocycles. Eur J Org Chem 7:1133–1144. doi:10.1002/ejoc.200390167

    Article  Google Scholar 

  20. Domling A (2006) Recent developments in isocyanide-based multicomponent reactions in applied chemistry. Chem Rev 106:17–89. doi:10.1021/cr0505728

    Article  PubMed  Google Scholar 

  21. Mihovilovic MD, Tanetty P (2007) Metal-assisted multicomponent reactions involving carbon monoxide-towards heterocycle synthesis. Angew Chem Int Ed 46:3612–3615. doi:10.1002/anie.200604743

    Article  CAS  Google Scholar 

  22. Chebanov VA, Gura KA, Desenko SM (2010) Aminoazoles as key reagents in multicomponent heterocyclizations. Top Heterocycl Chem 23:41–84. doi:10.1007/7081_2009_21

    CAS  Google Scholar 

  23. Sedash YV, Gorobets NY, Chebanov VA, Konovalova IS, Shishkin OV, Desenko SM (2012) Dotting the is in three-component Biginelli-like condensations using 3-amino-1,2,4-triazole as a 1,3-binucleophile. RSC Adv 2:6719–6728. doi:10.1039/C2RA20195J

    Article  CAS  Google Scholar 

  24. Wan JP, Liu Y (2010) Synthesis of dihydropyrimidinones and thiones by multicomponent reactions: strategies beyond the classical Biginelli reaction. Synthesis 23:3943–3953. doi:10.1055/s-0030-1258290

    Google Scholar 

  25. Biginelli P (1893) Synthesis of 3,4-dihydropyrimidin-2(1H)-ones. Gazz Chim Ital 23:360–416

    Google Scholar 

  26. Builla AJ, Alajarin R, Jordon P, Vaquero JJ (1995) Synthesis of unsymmetrically substituted 1,4- dihydropyridines and analogous calcium antagonists by microwave heating. Synthesis 4:389–391. doi:10.1055/s-1995-3933

    Google Scholar 

  27. Shaabani A, Rahmati A, Naderi S (2005) A novel one-pot three-component reaction: synthesis of triheterocyclic 4\(H\)-pyrimido[2,1-\(b\)]benzazoles ring systems. Bioorg Med Chem Lett 15:5553. doi:10.1016/j.bmcl.2005.08.101

  28. Tu S, Shao Q, Zhou D, Cao L, Shi F, Li C (2007) Microwave-assisted efficient synthesis of benzo[4,5]imidazo[1,2-a]-pyrimidine derivatives in water under catalyst-free conditions. J Heterocycl Chem 44:1401–1406. doi:10.1002/jhet.5570440625

    Google Scholar 

  29. Sahu PK, Sahu PK, Lal J, Thavaselvam D, Agarwal DD (2012) A facile green synthesis and in vitro antimicrobial activity 4H-pyrimido[2,1-b][1,3]benzothiazole derivatives using aluminum trichloride under solvent free conditions. Med Chem Res 21:3826–3834. doi:10.1007/s00044-011-9908-6

    Google Scholar 

  30. Nagarapu L, Gaikwad HK, Palem JD, Venkatesh R, Bantu R, Sridhar B (2013) Convenient approach for the one-pot, three-component synthesis of triheterocyclic 4H-pyrimido[2,1-b]benzothiazole derivatives using TBAHS. Synth Commun 43:93–104. doi:10.1080/00397911.2011.592624

    Google Scholar 

  31. Sahu PK, Sahu PK, Jain R, Yadava R, Agarwal DD (2012) Hydrotalcite: recyclable, novel heterogeneous catalyst for facile, environmentally benign and high yielding multi-component synthesis and mechanistic study under solvent free conditions. Catal Sci Technol 2:2465–2475. doi:10.1039/c2cy20067h

    Article  CAS  Google Scholar 

  32. Rao GBD, Acharya BN, Verma SK, Kaushik MP (2011) N,N-Dichlorobis(2,4,6-trichlorophenyl)urea (CC-2) as a new reagent for the synthesis of pyrimidone and pyrimidine derivatives via Biginelli reaction. Tetrahedron Lett 52:809–812. doi:10.1016/j.tetlet.2010.12.039

    Article  CAS  Google Scholar 

  33. Surasani R, Kalita D, Rao AVD, Yarbagi K, Chandrasekhar KB (2012) \(\text{ FeF }_{3}\) as a novel catalyst for the synthesis of polyhydroquinoline derivatives via unsymmetrical Hantzsch reaction. J Fluorine Chem 135:91–96. doi: 10.1016/j.jfluchem.2011.09.005

    Article  CAS  Google Scholar 

  34. Atar AB, Jeong YT (2013) Silica supported tungstic acid (STA): an efficient catalyst for the synthesis of bis-spiro piperidine derivatives under milder condition. Tetrahedron Lett 54:1302–1306. doi:10.1016/j.tetlet.2012.12.105

    Google Scholar 

  35. Reddy MV, Reddy CS, Jeong YT (2012) Microwave-assisted, montmorillonite K-10 catalyzed three- component synthesis of \(2H\)-indazolo[2,1-b]phthalazine-triones under solvent-free conditions. Tetrahedron 68:6820–6828. doi:10.1016/j.tet.2012.06.045

    Google Scholar 

  36. Atar AB, Dindulkar SD, Jeong YT (2013) Lithium triflate (LiOTf): a highly efficient and reusable catalytic system for the synthesis of diversified quinolines under neat conditions. Monatsh Chem 144:695–701. doi:10.1007/s00706-012-0906-2

    Article  CAS  Google Scholar 

  37. Dindulkar SD, Parthiban P, Jeong YT (2012) \(\text{ BF }_{3}\cdot \text{ SiO }_{2}\) is a simple and efficient Lewis acid catalyst for the one-pot synthesis of polyfunctionalized piperidin-4-ones. Monatsh Chem 143:113–118. doi:10.1007/s00706-011-0576-5

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeon Tae Jeong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (doc 45489 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atar, A.B., Jeong, Y.T. \(\hbox {FeF}_{3}\) catalyzed cascade C–C and C–N bond formation: synthesis of differentially substituted triheterocyclic benzothiazole functionalities under solvent-free condition. Mol Divers 18, 389–401 (2014). https://doi.org/10.1007/s11030-014-9506-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-014-9506-x

Keywords

Navigation