Skip to main content
Log in

A green, multicomponent, regio- and stereo-selective 1,3-dipolar cycloaddition of azides and azomethine ylides generated in situ with bifunctional dipolarophiles using PEG-400

  • Full-Length Paper
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

A series of novel dispiropyrrolidine-linked 1,2,3-triazole derivatives have been prepared by one-pot, four-component protocol that employed 5-arylidene-3-(prop-2-ynyl)thiazolidine-2,4-dione, isatin, sarcosine and substituted azides using Cu(I) generated in situ as catalyst in PEG-400 as a highly efficient and green media. This is the first report of a four-component reaction involving a classical Huisgen reaction, in which the two dipolar moieties (substituted azides and in situ generated azomethine ylides) react with acetylenic and olefinic dipolarophiles, respectively. The 1,3-dipolar cycloaddition proceeds in a highly regio- and stereo-selective manner. This methodology can be an ideal tool for the preparation of biologically important five-membered heterocyclic compounds in one pot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Scheme 3
Fig. 4

Similar content being viewed by others

References

  1. Trost BM (1995) Atom economy: a challenge for organic synthesis: homogeneous catalysis leads the way. Angew Chem Int Ed Engl 34:259–281. doi:10.1002/anie.199502591

    Article  CAS  Google Scholar 

  2. Baumann M, Baxendale IR, Ley SV, Nikbin N (2011) An overview of the key routes to the best-selling 5-membered ring heterocyclic pharmaceuticals. Beilstein J Org Chem 7:442–495. doi:10.3762/bjoc.7.57

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Hilton ST, Ho TCT, Pljevaljcic G, Jones K (2000) A new route to spirooxindoles. Org Lett 2:2639–2641. doi:10.1021/ol0061642

    Article  CAS  PubMed  Google Scholar 

  4. Murugan R, Anbazhagan S, Narayanan SS (2009) Synthesis and in vivo antidiabetic activity of novel dispiropyrrolidines through [3+2] cycloaddition reactions with thiazolidinedione and rhodanine derivatives. Eur J Med Chem 44:3272–3279. doi:10.1016/j.ejmech.2009.03.035

    Article  CAS  PubMed  Google Scholar 

  5. Maheswari SU, Balamurugan K, Perumal S, Yogeeswari P, Sriram D (2010) A facile 1,3-dipolar cycloaddition of azomethine ylides to 2-arylidene-1,3-indanediones: Synthesis of dispiro-oxindolylpyrrolothiazoles and their antimycobacterial evaluation. Bioorg Med Chem Lett 20:7278–7282. doi:10.1016/j.bmcl.2010.10.080

    Article  CAS  PubMed  Google Scholar 

  6. Karthikeyan K, Sivakumar PM, Doble M, Perumal PT (2010) Synthesis, antibacterial activity evaluation and QSAR studies of novel dispiropyrrolidines. Eur J Med Chem 45:3446–3452. doi:10.1016/j.ejmech.2010.04.035

    Article  CAS  PubMed  Google Scholar 

  7. Kia Y, Osman H, Kumar RS, Murugaiyah V, Basiri A, Perumal S, Wahab HA, Bing CS (2013) Synthesis and discovery of novel piperidone-grafted mono- and bis-spirooxindole-hexahydropyrrolizines as potent cholinesterase inhibitors. Bioorg Med Chem 21:1696–1707. doi:10.1016/j.bmc.2013.01.066

    Article  CAS  PubMed  Google Scholar 

  8. Arun Y, Bhaskar G, Balachandran C, Ignacimuthu S, Perumal PT (2013) Facile one-pot synthesis of novel dispirooxindole-pyrrolidine derivatives and their antimicrobial and anticancer activity against A549 human lung adenocarcinoma cancer cell line. Bioorg Med Chem Lett 23:1839–1845. doi:10.1016/j.bmcl.2013.01.023

    Article  CAS  PubMed  Google Scholar 

  9. Nair N, Kudo W, Smith MA, Abrol R, Goddard WA III, Reddy VP (2011) Novel purine-based fluoroaryl-1,2,3-triazoles as neuroprotecting agents: synthesis, neuronal cell culture investigations, and CDK5 docking studies. Bioorg Med Chem Lett 21:3957–3961. doi:10.1016/j.bmcl.2011.05.019

    Article  CAS  PubMed  Google Scholar 

  10. Li WT, Wu WH, Tang CH, Tai R, Chen ST (2011) One-pot tandem copper-catalyzed library synthesis of 1-thiazolyl-1,2,3-triazoles as anticancer agents. ACS Comb Sci 13:72–78. doi:10.1021/co1000234

    Article  PubMed  Google Scholar 

  11. Patpi SR, Pulipati L, Yogeeswari P, Sriram D, Jain N, Sridhar B, Murthy R (2012) Design, synthesis, and structure–activity correlations of novel dibenzo[b, d]furan, dibenzo[b, d]thiophene, and N-methylcarbazole clubbed 1,2,3-triazoles as potent inhibitors of mycobacterium tuberculosis. J Med Chem 55:3911–3922. doi:10.1021/jm300125e

    Article  CAS  PubMed  Google Scholar 

  12. Zhao X, Lu BW, Lu JR, Xin CW, Li JF, Liu Y (2012) Design, synthesis and antimicrobial activities of 1,2,3-triazole derivatives. Chin Chem Lett 23:933–935. doi:10.1016/j.cclet.2012.06.014

    Article  CAS  Google Scholar 

  13. Kumar K, Sagar S, Esau L, Kaur M, Kumar V (2012) Synthesis of novel 1\(H\)-1,2,3-triazole tethered C-5 substituted uracil-isatin conjugates and their cytotoxic evaluation. Eur J Med Chem 58:153–159. doi: 10.1016/j.ejmech.2012.10.008

    Article  PubMed  Google Scholar 

  14. Hazra A, Bharitkar YP, Chakraborty D, Mondal SK, Singal N, Mondal S, Maity A, Paira R, Banerjee S, Mondal NB (2013) Regio- and stereo-selective synthesis of a library of bioactive dispiro-oxindolo/acenaphthoquino andrographolides via 1,3-dipolar cycloaddition reaction under microwave irradiation. ACS Comb Sci 15:41–48. doi:10.1021/co3001154

    Article  CAS  PubMed  Google Scholar 

  15. Cantello BCC, Cawthorne MA, Cottam GP, Duff PT, Haigh D, Hindley RM, Lister CA, Smith SA, Thurlby PL (1994) [[\(\omega \)-(Heterocyclylamino)alkoxy]benzyl]-2,4-thiazolidinediones as potent antihyperglycemic agents. J Med Chem 37:3977–3985. doi: 10.1021/jm00049a017

    Article  CAS  PubMed  Google Scholar 

  16. Lohray BB, Bhushan V, Rao BP, Madhavan GR, Murali N, Rao KN, Reddy AK, Rajesh BM, Reddy PG, Chakrabarti R, Vikramadithyan RK, Rajagopalan R, Mamidi RNVS, Jajoo HK, Subramaniam S (1998) Novel euglycemic and hypolipidemic agents. 1. J Med Chem 41:1619–1630. doi:10.1021/jm970444e

    Article  CAS  PubMed  Google Scholar 

  17. Prabhakar C, Madhusudhan G, Sahadev K, Reddy CM, Sarma MR, Reddy GO, Chakrabarti R, Rao CS, Kumar TD, Rajagopalan R (1998) Synthesis and biological activity of novel thiazolidinediones. Bioorg Med Chem Lett 8:2725–2730. doi:10.1016/S0960-894X(98)00485-5

    Article  CAS  PubMed  Google Scholar 

  18. Sunduru N, Srivastava K, Rajakumar S, Puri SK, Saxena JK, Chauhan PMS (2009) Synthesis of novel thiourea, thiazolidinedione and thioparabanic acid derivatives of 4-aminoquinoline as potent antimalarials. Bioorg Med Chem Lett 19:2570–2573. doi:10.1016/j.bmcl.2009.03.026

    Article  CAS  PubMed  Google Scholar 

  19. Reddy KA, Lohray BB, Bhushan V, Reddy AS, Kishore PH, Rao VV, Saibaba V, Bajji AC, Rajesh BM, Reddy KV, Chakrabarti R, Rajagopalan R (1998) Novel euglycemic and hypolipidemic agents: Part - 2 antioxidant moiety as structural motif. Bioorg Med Chem Lett 8:999–1002. doi:10.1016/S0960-894X(98)00159-0

    Google Scholar 

  20. Patil V, Tilekar K, Munj SM, Mohan R, Ramaa CS (2010) Synthesis and primary cytotoxicity evaluation of new 5-benzylidene-2,4-thiazolidinedione derivatives. Eur J Med Chem 45:4539–4544. doi:10.1016/j.ejmech.2010.07.014

    Article  CAS  PubMed  Google Scholar 

  21. Fan YH, Chen H, Natarajan A, Guo Y, Harbinski F, Iyasere J, Christ W, Aktasa H, Halperina JA (2004) Structure-activity requirements for the antiproliferative effect of troglitazone derivatives mediated by depletion of intracellular calcium. Bioorg Med Chem Lett 14:2547–2550. doi:10.1016/j.bmcl.2004.02.087

    Article  CAS  PubMed  Google Scholar 

  22. Nomura M, Kinoshita S, Satoh H, Maeda T, Murakami K, Tsunoda M, Miyachi H, Awano K (1999) (3-Substituted benzyl)thiazolidine-2,4-diones as structurally new antihyperglycemic agents. Bioorg Med Chem Lett 9:533–538. doi:10.1016/S0960-894X(99)00039-6

    Article  CAS  PubMed  Google Scholar 

  23. Verma A, Saraf SK (2008) 4-Thiazolidinone-a biologically active scaffold. Eur J Med Chem 43:897–905. doi:10.1016/j.ejmech.2007.07.017

    Article  CAS  PubMed  Google Scholar 

  24. Tomasic T, Masic LP (2012) Rhodanine as a scaffold in drug discovery: a critical review of its biological activities and mechanisms of target modulation. Expert Opin Drug Discov 7:549–560. doi:10.1517/17460441.2012.688743

    Article  CAS  PubMed  Google Scholar 

  25. Mendgen T, Steuer C, Klein CD (2012) Privileged scaffolds or promiscuous binders: a comparative study on rhodanines and related heterocycles in medicinal chemistry. J Med Chem 55:743–753. doi:10.1021/jm201243p

    Article  CAS  PubMed  Google Scholar 

  26. Huisgen R (1984) In: Padwa A (ed) 1,3-Dipolar cycloaddition chemistry. Wiley, New York

    Google Scholar 

  27. Grigg R, Sridharan V (1993) Advances in cycloaddition, vol 3. Jai Press, London, pp 161–180

    Google Scholar 

  28. Arumugam N, Periyasami G, Raghunathan R, Kamalraj S, Muthumary J (2011) Synthesis and antimicrobial activity of highly functionalised novel \(\beta \)-lactam grafted spiropyrrolidines and pyrrolizidines. Eur J Med Chem 46:600–607. doi: 10.1016/j.ejmech.2010.11.039

    Article  CAS  PubMed  Google Scholar 

  29. Khurana JM, Chaudhary A, Lumb A, Nand B (2012) An expedient four-component domino protocol for the synthesis of novel benzo[a]phenazine annulated heterocycles and their photophysical studies. Green Chem 14:2321–2327. doi:10.1039/C2GC35644A

    Article  CAS  Google Scholar 

  30. Singh H, Sindhu J, Khurana JM, Sharma C, Aneja KR (2013) A facile eco-friendly one-pot five-component synthesis of novel 1,2,3-triazole-linked pentasubstituted 1,4-dihydropyridines and their biological and photophysical studies. Aust J Chem 66:1088–1096. doi:10.1071/CH13217

    Article  CAS  Google Scholar 

  31. Sindhu J, Singh H, Khurana JM, Sharma C, Aneja KR (2013) Multicomponent synthesis of novel 2-aryl-5-((1-aryl-1H-1,2,3-triazol-4-yl)methylthio)-1,3,4-oxadiazoles using cuI as catalyst and their antimicrobial evaluation. Aust J Chem 66:710–717. doi:10.1071/CH13082

    Article  CAS  Google Scholar 

  32. Himo F, Lovell T, Hilgraf R, Rostovtsev VV, Noodleman L, Sharpless KB, Fokin VV (2004) Copper(I)-catalyzed synthesis of azoles. DFT study predicts unprecedented reactivity and intermediates. J Am Chem Soc 127:210–216. doi:10.1021/ja0471525

    Article  Google Scholar 

  33. Obushak ND, Pokhodylo NT, Pidlypnyi NI, Matiichuk VS (2008) Synthesis of 1,2,4- and 1,3,4-oxadiazoles from 1-aryl-5-methyl-1H-1,2,3-triazole-4-carbonyl chlorides. Russ, J Org Chem 44:1522–1527. doi:10.1134/S1070428008100217

    Article  CAS  Google Scholar 

Download references

Acknowledgments

JS and HS thank UGC, New Delhi, India for the grant of Junior Research Fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Khurana.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 4295 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sindhu, J., Singh, H. & Khurana, J.M. A green, multicomponent, regio- and stereo-selective 1,3-dipolar cycloaddition of azides and azomethine ylides generated in situ with bifunctional dipolarophiles using PEG-400. Mol Divers 18, 345–355 (2014). https://doi.org/10.1007/s11030-014-9505-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-014-9505-y

Keywords

Navigation