Skip to main content
Log in

Ionic liquid-supported synthesis of piperazine derivatives as potential insecticides

  • Short Communication
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

With the purpose of extending our efforts on the search and synthesis of new insecticides with novel acting modes, a series of novel 4-(2-(4-(pyridin-2-yl)piperazin-1-yl)ethoxy)aniline derivatives were designed based on classical serotonin receptor ligands and synthesized through the rapid ionic liquid-supported parallel synthesis with yields up to 88 %. These products were purified through the convenient washing with appropriate solvents and isolated in good yield. In addition, 27 amide or urea derivatives of anilines were also prepared. Bioassay data showed that some of the synthesized compounds displayed selective insecticidal bioactivities against tested pests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Scheme 2
Scheme 3

References

  1. Damalas CA (2009) Understanding benefits and risks of pesticide use. Sci Res Essay 4: 945–949. http://www.academicjournals.org/sre/pdf/pdf2009/Oct/Damalas%20Pdf.pdf

    Google Scholar 

  2. Kalia A, Gosal SK (2011) Effect of pesticide application on soil microorganisms. Arch Agron Soil Sci 57:569–596. doi:10.1080/03650341003787582

    Article  CAS  Google Scholar 

  3. Vontas J, Hernández-Crespo P et al (2011) Insecticide resistance in Tephritid flies. Pestic Biochem Physiol 100:199–205. doi:10.1016/j.pestbp.2011.04.004

    Article  CAS  Google Scholar 

  4. Anstey ML, Rogers SM, Ott SR, Burrows M, Simpson SJ (2009) Serotonin mediates behavioral gregarization underlying swarm formation in desert locusts. Science 323:627–630. doi:10.1126/science.1165939

    Article  CAS  PubMed  Google Scholar 

  5. Nassel DR (1988) Serotonin and serotonin-immunoreactive neurons in the nervous system of insects. Prog Neurobiol 30:1–85. doi:10.1016/0301-0082(88)90002-0

    Article  CAS  PubMed  Google Scholar 

  6. Lange AB (2004) A neurohormonal role for serotonin in the control of locust oviducts. Arch Insect Biochem Physiol 56:179–190. doi:10.1002/arch.20010

    Article  CAS  PubMed  Google Scholar 

  7. Isabel G, Gourdoux L, Moreau R (2001) Changes of biogenic amine levels in hemolymph during diapausing and non-diapausing status in Pieris brassicae L. Comp Biochem Physiol A 128:117–127. doi:10.1016/S1095-6433(00)00284-1

    Article  CAS  Google Scholar 

  8. Smith MW, Borts TL, Emkey R, Cook CA, Wiggins CJ, Gutierrez JA (2003) Characterization of a novel G-protein coupled receptor from the parasitic nematode H. contortus with high affinity for serotonin. J Neurochem 86:255–266. doi:10.1046/j.1471-4159.2003.01849.x

    Article  CAS  PubMed  Google Scholar 

  9. Tricklebank MD, Forler C, Middlemiss DN, Fozard R (1999) Tetrahydrobenzindoles: selective antagonists of the 5-HT7 receptor. J Med Chem 42:533–535. doi:10.1021/JM980519U

    Article  Google Scholar 

  10. Campiani G, Morelli E, Gemma S, Nacci V, Butini S, Hamon M, Novellino E, Greco G, Cagnotto A, Goegan M et al (1999) Pyrroloquinoxaline derivatives as high-affinity and selective 5-HT3 receptor agonists: synthesis, further structure–activity relationships, and biological studies. J Med Chem 42:4362–4379. doi:10.1021/jm990151g

    Article  CAS  PubMed  Google Scholar 

  11. Kuipers W, Kruse CG, van Wijngaarden I, Standaar PJ, Spek AL, Ijzerman AP (1997) 5-HT1A-versus D2-receptor selectivity of flesinoxan and analogous N4-substituted N1-arylpiperazines. J Med Chem 40:300–312. doi:10.1021/JM960496O

    Article  CAS  PubMed  Google Scholar 

  12. Cai MY, Li Z, Huang QC, Song GH (2008) [1-(Arylmethyl) piperidin-4-yl]oxy-(trifluoromethyl)-pyridines: ketanserin analogues with insect growth regulating activity. Chem Biodivers 5:1844–1855. doi:10.1002/cbdv.200890172

    Google Scholar 

  13. White WH, Gutierrez JA, Naylor SA et al (2007) In vitro and in vivo characterization of \(p\)-amino-phenethyl-\(m\)-trifluoromethylphenylpiperazine (PAPP), a novel serotonergic agonist with anthelmintic activity against Haemonchus contortus, Teladorsagia circumcincta and Trichostrongylus colubriformis. Vet Parasitol 146:58–65. doi: 10.1016/j.vetpar.2007.02.014

    Article  CAS  PubMed  Google Scholar 

  14. Sakamoto N, Saito S, Hirose T, Suzuki M, Matsuo S, Izumi K, Nagatomi T, Ikegami H, Umeda K, Tsushima K, Matsuo N (2003) The discovery of pyridalyl: a novel insecticidal agent for controlling lepidopterous pests. Pest Manag Sci 60:25–34. doi:10.1002/ps.788

    Article  Google Scholar 

  15. Sun W, Blanton MP, Gabriel JL, Canney DJ (2006) Bioisosteric replacement in the design and synthesis of ligands for nicotinic acetylcholine receptors. Med Chem Res 14:241–259. doi:10.1007/s00044-005-0137-8

    Article  Google Scholar 

  16. Hansch C, Leo A, Hoekman D (1995) Exploring QSAR-hydrophobic, electronic, and steric constants. American Chemical Society, Washington, DC

    Google Scholar 

  17. Siebert C (2004) Drug development. The bioisosterism concept. Chemie in UnsererZeit 38:320–324. doi:10.1002/ciuz.200400331

    Article  CAS  Google Scholar 

  18. Cai MY, Li Z, Fan F, Huang QC, Shao XS, Song GH (2010) Design and synthesis of novel insecticides based on the serotonergic ligand 1-[(4-aminophenyl)ethyl]-4-[3-(trifluoromethyl) phenyl]piperazine (PAPP). J Agric Food Chem 58:2624–2629. doi:10.1021/jf902640u

    Google Scholar 

  19. Ypema HL, Gold RE (1999) Modification of a naturally occurring compound to produce a new fungicide. Plant Dis 83:4–19. doi:10.1094/PDIS.1999.83.1.4

    Article  CAS  Google Scholar 

  20. Wang W, Yue L, Zhang SF, Ye QF, Qi WY, Wang HY, Chen ZY (2013) Fate of pyribambenz propyl (ZJ0273) in anaerobic soils revealed by position-specific \(^{14}\)C labeling. J Hazard Mater 258–259:151–158. doi: 10.1016/j.jhazmat.2013.04.040

    Article  PubMed  Google Scholar 

  21. Schareina T, Zapf A, Cotte A, Muller N, Beller M (2008) A practical and improved copper-catalyzed synthesis of the central intermediate of diafenthiuron and related products. Org Process Res Dev 12:537–539. doi:10.1021/op700287s

    Article  CAS  Google Scholar 

  22. Nishimura K, Okimoto H (2007) Effects of organosilicon- pyrethroid-like insecticides on merve preparations of American cockroaches and crayfish. Pest Manag Sci 57:509–513. doi:10.1002/ps.317

    Article  Google Scholar 

  23. Saul P (1976) The ether linkage. Wiley, London

    Google Scholar 

  24. Armand M, Endres F, MacFarlane DR, Ohno H, Scrosati B (2009) Ionic-liquid materials for the electrochemical challenges of the future. Nat Mater 8:621–629. doi:10.1038/nmat2448

    Article  CAS  PubMed  Google Scholar 

  25. Ni B, Headley AD (2010) Ionic-liquid-supported (ILS) catalysts for asymmetric organic synthesis. Chem Eur J 16:4426–4436. doi:10.1002/chem.200902747

    Article  CAS  PubMed  Google Scholar 

  26. Das RN, Roy K (2013) Advances in QSPR/QSTR models of ionic liquids for the design of greener solvents of the future. Mol Divers 17:151–196. doi:10.1007/s11030-012-9413-y

    Article  CAS  PubMed  Google Scholar 

  27. Duan JL, Sun Y, Chen H, Qiu GF et al (2013) HMDO-promoted peptide and protein synthesis in ionic liquid. J Org Chem 78:7013–7022. doi:10.1021/jo400797t

    Article  CAS  PubMed  Google Scholar 

  28. Kang LQ, Cai YQ, Peng YQ, Ying XL, Song GH (2011) Silica-supported sulfonic acid-functionalized ionic liquid coated with [bmim][\(\text{ PF }_{6}\)] as a scavenger for the synthesis of amides. Mol Divers 15:109–113. doi: 10.1007/s11030-010-9261-6

    Article  CAS  PubMed  Google Scholar 

  29. Joshi MD, Li T, Zhong QQ, Anderson JL (2013) Using glucaminium-based ionic liquids for improving the separation of 2-aminopyrimidine-5-ylboronic acid and its pinacol ester by high performance liquid chromatography. J Chromatogr A 1308:161–165. doi:10.1016/j.chroma.2013.07.108

    Article  CAS  PubMed  Google Scholar 

  30. Greaves TL, Drummond CJ (2008) Ionic liquids as amphiphile self-assembly media. Chem Soc Rev 37:1709–1726. doi:10.1039/b801395k

    Google Scholar 

  31. Atesin AC, Ray NA, Stair PC, Marks TJ (2012) Etheric C–O bond hydrogenolysis using a tandem lanthanide triflate/supported palladium nanoparticle catalyst system. J Am Chem Soc 134:14682–14685. doi:10.1021/ja306309u

    Google Scholar 

  32. Muthayala MK, Chhikara BS, Parang K, Kumar A (2012) Ionic liquid-supported synthesis of sulfonamides and carboxamides. ACS Comb Sci 14:60–65. doi:10.1021/co200149m

    Article  PubMed  Google Scholar 

  33. Chen CH, Chen CY, Lin PT, Sun CM (2012) Novel ionic liquid supported-multicomponent reaction toward chimeric bis-hetero- cycles. Mol Divers 16:503–512. doi:10.1007/s11030-012-9383-0

    Article  CAS  PubMed  Google Scholar 

  34. Muthayala MK, Sunita M, Kumar A (2012) Synthesis of ionic liquid-supported sulfonylazide and its application in diazotransfer reaction. J Org Chem 77:8787–8791. doi:10.1021/jo301529b

    Article  Google Scholar 

  35. Chen LH, Xu ZH, Lin CC, Sun CM (2013) Divergent ionic liquid supported synthesis of isolable guanidine linked quinoxalinone and benzodiamine. Tetrahedron Lett 54:454–458. doi:10.1016/j.tetlet.2012.11.012

    Article  CAS  Google Scholar 

  36. Miao W, Chan TH (2006) Ionic-liquid-supported synthesis: a novel liquid-phase strategy for organic synthesis. Acc Chem Res 39:897–908. doi:10.1021/ar030252f

    Article  CAS  PubMed  Google Scholar 

  37. Hsu HY, Tseng CC, Matii B, Sun CM (2012) Ionic liquid-supported synthesis of dihydroquinazolines and tetrahydroquinazolines under microwave irradiation. Mol Divers 16:241–249. doi:10.1007/s11030-011-9350-1

    Article  CAS  PubMed  Google Scholar 

  38. Peng YQ, Yi FP, Song GH, Zhang Y (2005) Solution phase parallel synthesis of 4-aminophenyl ethers using a carboxyl-functionalized ionic liquid as support. Monatshefte fur Chemie 136:1751–1755. doi:10.1007/s00706-005-0361-4

    Article  CAS  Google Scholar 

  39. Walsh DA, Franzyshen SK, Yanni JM (1989) Synthesis and antiallergy activity of 4-(diarylhydroxymethyl)-1-[3-(aryloxy)propyl]piperidines and structurally related compounds. J Med Chem 32:105–118. doi:10.1021/jm00121a022

    Article  CAS  PubMed  Google Scholar 

  40. Pliushchev MA, Wodka D, Sorensen BK, Link JT (2010) Preparation of N-adamantanecarboxamide derivatives as inhibitors of the 11-\(\beta \)-hydroxysteroid dehydrogenase type 1 enzyme for disease treatment. U.S. Patent Application Publication, US 20100222316 A1 20100902

  41. Ayscough AP, Showell GA, Teall MR, Temple HE, Ahmed S (2010) Organosilicon compounds and their use as the modulators of the trpv1 receptor. PCT International Applications, WO 2010092342 A1 20100819.

Download references

Acknowledgments

Financial support for this study from the NSFC (Grant 20972052), National Basic Research Program of China (973 Program) (Grant 2010CB126101), and National Key Technology R and D Program (Grant No. 2011BAE06B05-4) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gong-Hua Song.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (doc 45048 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, Y., Wang, JY. & Song, GH. Ionic liquid-supported synthesis of piperazine derivatives as potential insecticides. Mol Divers 18, 195–202 (2014). https://doi.org/10.1007/s11030-013-9492-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-013-9492-4

Keywords

Navigation