Skip to main content
Log in

Quinazoline-2,4(\(1H,3H\))-diones inhibit the growth of multiple human tumor cell lines

  • Full-Length Paper
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Quinazoline-2,4(\(1H,3H\))-diones exhibit a wealth of biological activities including antitumor proliferation. We established an improved method for the synthesis of quinazoline-2,4(\(1H,3H\))-dione derivatives with three points of molecular diversity. Data indicate that compounds 60 (average \(\text{ logGI}_{50} \!=\! -6.1\)), 65 (average \(\text{ logGI}_{50} \!=\! -6.13\)), 69 (average \(\text{ logGI}_{50} \!=\! -6.44\)), 72 (average \(\text{ logGI}_{50} \!=\! -6.39\)), and 86 (average \(\text{ logGI}_{50} = -6.45\)) significantly inhibited the in vitro growth of 60 human tumor cell lines tested. Structure–activity relationship analyses indicate that chlorophenethylureido is the necessary substituent at the \(\text{ D}_{3}\) diversity point (7-position of quinazoline-2,4(\(1H,3H\))-dione), in particular, \(o\)-chlorophenethylurea (69) achieved optimal activity. \(o\)- or \(m\)-Chlorophenethyl substitutions (69 and 72) at the \(\text{ D}_{2}\) diversity point (3-position of quinazo line-2,4(\(1H,3H\))-dione) gave the most potent compounds. Methoxyl and 4-methylpiperazin-1-yl substitution at the \(\text{ D}_{1}\) diversity point (6-position of quinazoline-2,4(\(1H,3H\))-dione skeleton) may yield better activity than other groups. The quinazoline-2,4(\(1H,3H\))-dione scaffold can be effectively replaced by 2\(H\)-benzo[b][1,4]thiazin-3(4\(H\))-one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Fig. 3
Scheme 3
Scheme 4
Scheme 5

Similar content being viewed by others

References

  1. Michael DH, Michael AC, Margaret Z, Debra LH, Laura AS, Mark CS, Glenn WG, Jeffrey WG, Edmund E, Michael AS, Stephen JG (2007) In vitro and in vivo activities of PD 0305970 and PD 0326448, new bacterial gyrase/topoisomerase inhibitors with potent antibacterial activities versus multidrug-resistant gram-Ppositive and fastidious organism groups. Antimicrob Agents Chemother 51:1191–1201. doi:10.1128/AAC.01321-06

    Article  Google Scholar 

  2. Lisa MO, Kathryn RS, Jonathan DR, Heidi AS, Karl D, Robert JK, Hiroshi H (2010) Comparison of in vitro activities of fluoroquinolone-like 2,4- and 1,3-diones. Antimicrob Agents Chemother 54:3011–3014. doi:10.1128/AAC.00190-10

    Article  Google Scholar 

  3. Buter TW, Fliri AFJ, Gallaschun RJ, Butler TW, Fliri AFJ, Gallaschun RJ (2002) Azabicycloalkane derivatives for use as serotonin reuptake inhibitors and \(5\text{-HT}_{2a}\) antagonists. EP 1178048, 2002-02-06

  4. Seong C, Park N, Choi J, Park CM, Park W, Kong J (2008) Nover substituted-1H-quinazoline-2,4-dione derivatives, preparation method thereof and pharmaceutical composition containing the same. WO 2008004716, 2008-01-10

  5. Allgeier H, Froestl W, Koller M, Mattes H, Nozulak J, Ofner S, Orain D, Rasetti V, Renaud J, Soldermann N, Floersheim P (2006) Quinazoline derivatives. WO 2006010591, 2006-02-02

  6. Vittoria C, Daniela C, Flavia V, Ombretta L, Guido F, Chiara C, Alessandro G, Carla G, Nicoletta G, Paola G, Jacopo S, Francesca D, Stefano M (2006) Structural investigation of the 7-Chloro-3-hydroxy-1\(H\)-quinazoline-2,4-dione scaffold to obtain AMPA and Kainate receptor selective antagonists. synthesis, pharmacological, and molecular modeling studies. J Med Chem 49:6015–6026. doi: 10.1021/jm0604880

    Article  Google Scholar 

  7. Daniela C, Ombretta L, Vittoria C, Flavia V, Daniela P, Guido F, Kurt L, Silvio O (2010) Pharmacological characterization of some selected 4,5-dihydro-4-oxo-1,2,4-triazolo[1,5-\(a\)]quinoxaline-2- carboxylates and 3-hydroxyquinazoline-2,4-diones as (\(S\))-2-amino-3-(3- hydroxy-5- methylisoxazol-4-yl)-propionic acid receptor antagonists. Chem Pharm Bull 58:908–911. doi:10.1248/cpb.58.908

    Google Scholar 

  8. Ronald KR, Jeffery BP, Richard AR, James JM, Robert F, Joan AK, David AB, Alfonso T (1988) Thiophene systems. 9. thienopyrimidinedione derivatives as potential antihypertensive agents. J Med Chem 31:1786–1793. doi:10.1021/jm00117a019

    Article  Google Scholar 

  9. Shunsuke G, Hiroyuki T, Masami K, Koji M, Kooji K (2003) The process development of a novel aldose reductase inhibitor, FK366. Part 1. Improvement of discovery process and new syntheses of 1-substituted quinazolinediones. Org Process Res Dev 7:700–706. doi:10.1021/op0340661

    Article  Google Scholar 

  10. Wu JJQ, Guo JX, Nguyen LT (2008) Novel agents of calcium ion channel modulators. WO 2008112715, 2008-09-18

  11. Scarborough RM, Bauer SM, Pandey A (2008) Platelet ADP receptor inhibitors. WO 2008036843, 2008-03-27

  12. Astles PC, Baker SR, Bonnefous C, Vernier JM, Keenan M, Sanderson AJ (2003) Aza-cyclic compounds as modulators of acetylcholine receptors. WO 03062224, 2003-07-31

  13. Gou X, Lo HY, Man CC, Takanashi H (2009) Quinazolinedione cheymase inhibitors. WO 2009023655, 2009-02-19

  14. Jérémie M, Bernard M, Caroline R, Corinne G, Jacques P, Raphaël F (2010) NF-\(\kappa \)B inducing kinase (NIK) inhibitors: identification of new scaffolds using virtual screening. Bioorg Med Chem Lett 20:4515–4520. doi: 10.1016/j.bmcl.2010.06.027

    Article  Google Scholar 

  15. Gaudilliere B, Jacobelli H, Wilson MW, Picard JA (2003) Alkynylated fused ring pyrimidine compounds as matrix metalloprotease 13 inhibitors. WO 2003033478, 2003-04-24

  16. Andrianjara C, Chantel-Barvian N, Gaudilliere B, Jacobelli H, Ortwine DF, Patt WC, Pham L, Kostlan CR, Wilson MW (2002) Quinazolines as MMP-13 inhibitors. WO 2002064572, 2002-08-22

  17. Gaudilliere B, Jacobelli H, Wilson MW, Picard JA, Gaudilliere B, Jacobelli H, Wilson MW, Picard JA (2004) Preparation of new alkynylated quinazoline compounds as MMP-13 inhibitors. WO 2004007469, 2004-01-22

  18. Dora C, Michelle AB, Cynthia JB, Saïd MS, Andrew DH (2005) Design, synthesis, and evaluation of potent and selective benzoyleneurea-based inhibitors of protein geranylgeranyl- transferase-I. Bioorg Med Chem 13:677–688. doi:10.1016/j.bmc.2004.10.053

    Google Scholar 

  19. Berdini V, Boyle RG, Saxty G, Verdonk ML, Woodhead SJ, Wyatt PG, Sore HF, Walker DW, Caldwell J, Collins I (2006) Phamaceutical compounds. WO 2006051290, 2006-05-18

  20. Cortez R, Rivero I, Somanathan R, Aguirre G, Ramirez F, Hong E (1991) Synthesis of quinazolinedione using triphosgene. Synth Commun 21:285–292. doi:10.1080/00397919108020823

    Article  CAS  Google Scholar 

  21. Sung JL, Yoshitaka K, Dingwei TY, Tamara AM, Christopher MR, Orest TM, Manton RF, Kigen K, Masafumi S (1995) Discovery of potent cyclic GMP phosphodiesterase inhibitors. 2-pyridyl- and 2-imidazolylquinazolines possessing cyclic GMP phosphodiesterase and thromboxane synthesis inhibitory activities. J Med Chem 38:3547–3557. doi:10.1021/jm00018a014

    Article  Google Scholar 

  22. William FM, Joseph DS, Joseph WG, Adi MT, Carolyn AW, Mary FS, Elizabeth M, Chandra RS, Elizabeth B (1995) Novel inhibitors of the nuclear factor of activated T cells (NFAT)-mediated transcription of \(\beta \)-galactosidase: potential immunosupressive and antiinflammatory agents. J Med Chem 38:2557–2569. doi: 10.1021/jm00014a009

    Article  Google Scholar 

  23. Edward BS (1985) Synthesis of quinazoline-2,4,5,8-(1H,3H)- tetrones and their amine nucleophilic addition chemistry. J Org Chem 50:4861–4865. doi:10.1021/jo00224a042

    Google Scholar 

  24. Takumi M, Noriaki O, Takatoshi I, Toshiyuki M (2000) Synthesis of 2,4-dihydroxyquinazolines using carbon dioxide in the presence of DBU under mild conditions. Tetrahedron Lett 41:1051–1053. doi:10.1016/S0040-4039(99)02231-5

    Article  Google Scholar 

  25. Takumi M, Yoshio I (2002) Highly efficient synthesis of \(1H\)-quinazoline-2,4-diones using carbon dioxide in the presence of catalytic amount of DBU. Tetrahedron 58:3155–3158. doi:10.1016/S0040-4020(02)00279-X

    Google Scholar 

  26. Terrence JC, Patrick M, Sunil S (2005) An eco-efficient pilot plant scale synthesis of two 5-substituted-6,7-dimethoxy-1-H-quinazoline- 2,4-diones. Green Chem 7:586–589. doi:10.1039/B504305K

    Article  Google Scholar 

  27. Gao J, He LN, Miao CX, Sébastien C (2010) Chemical fixation of \(\text{ CO}_{2}\): efficient synthesis of quinazoline-2,4(1H, 3H)-diones catalyzed by guanidines under solvent-free conditions. Tetrahedron 66:4063–4067. doi: 10.1016/j.tet.2010.04.011

    Article  CAS  Google Scholar 

  28. Donald WC, Marianne SR (1989) 2,6-Dihydroxy -\(4H\)-pyridazino[3,4,5-de] quinazoline: a new ring system. J Heterocyclic Chem 26:1885–1886. doi: 10.1002/jhet.5570260667

    Article  Google Scholar 

  29. Li Z, Huang H, Sun H, Jiang H, Liu H (2008) Microwave-assisted efficient and convenient synthesis of 2,4(1H,3H)-quinazolinediones and 2-thioxoquinazolines. J Comb Chem 10:484–486. doi:10.1021/cc800040z

    Article  PubMed  CAS  Google Scholar 

  30. Jack D, Abram NB, Jane M, Thomas NR (1986) Design and synthesis of 2-(arylamino)-4(3H)-quinazolinones as novel inhibitors of rat lens aldose reductase. J Med Chem 29:627–629. doi:10.1021/jm00155a007

    Article  Google Scholar 

  31. Michael CW, Robert HS, Anthony JF, Robert LW (2006) Tandem palladium-catalyzed urea arylation-intramolecular ester amidation:regioselective synthesis of 3-alkylated 2,4-quinazolinediones. Org Lett 8:5089–5091. doi:10.1021/ol062009x

    Article  Google Scholar 

  32. Wu H, Xie X, Liu G (2010) Parallel solution phase synthesis of \(3,6,7-4(3H)\)-quinazolinones and evaluation of their antitumor activities against human cancer. J Comb Chem 12:346–355. doi: 10.1021/cc900173s

    Article  PubMed  CAS  Google Scholar 

  33. Cai X, Zhai H, Wang J, Jeffrey F, Qu H, Yin L, Lai C, Bao R, Qian C (2010) Discovery of 7-(4-(3-Ethynylpenylamino)-7-methoxyquinazolin-6-yloxy)-N-hydroxyheptanamide(CUDC-101) as a potent multi-acting HDAC, EGFR, and HER2 inhibitor for the treatment of cancer. J Med Chem 53:2000–2009. doi:10.1021/jm901453q

    Google Scholar 

  34. Stacy WR, Lidia CS, Peter A, Kenneth WB, Wendy DC, Michael AG, Kobporn LH, Manfred J, Paul K, Nancy T, Heather W (2002) Inhibitors of human histone deacetylase: synthesis and enzyme and cellular activity of straight chain hydroxamates. J Med Chem 45:753–757. doi:10.1021/jm015568c

    Article  Google Scholar 

  35. Zhu N, Zhang F, Liu G (2010) Dynamic covalent chemistry of disulfides offers a highly efficient synthesis of diverse benzofused nitrogen-sulfur heterocycles in one pot. J Comb Chem 12:531–540. doi:10.1021/cc100042v

    Article  PubMed  CAS  Google Scholar 

  36. Li L, Liu G, Wang Z, Yuan Y, Zhang C, Tian H, Wu X, Zhang J (2004) Multi-step parallel synthesis of substituted 5-aminobenzimidazoles in solution-phase. J Comb Chem 6:811–821. doi:10.1021/cc049932f

    Google Scholar 

  37. Yan Y, Liu Z, Zhang J, Xu R, Hu X, Liu G (2011) A reverse method for diversity introduction of benzimidazole to synthesize H/K+-ATP enzyme inhibitors. Bioorg Med Chem Lett 21:4189–4192. doi:10.1016/j.bmcl.2011.05.080

  38. Robert HS (2006) The NCI60 human tumour cell line anticancer drug screen. Nat Rev Cancer 6:813–823. doi:10.1038/nrc1951

    Google Scholar 

  39. Aldo A, Silvia B, Massimiliano G, Alberto L, Alessandra L, Rita M, Mirella R, Lucilla V, Natalia C, Concettina C, Manuela V, Maddalena Z, Claudio S, Lanfranco M, Robert HS (2008) Antitumor activity of new substituted 3-(5-imidazo[2,1-b]- thiazolylmethylene)-2-indolinones and 3-(5-imidazo[2,1-\(b\)]thi- adiazolylmethylene)-2-indolinones: selectivity against colon tumor cells and effect on cell cycle-related \(\text{ events}^{1}\). J Med Chem 51:7508–7513. doi:10.1021/jm800827q

    Google Scholar 

  40. Michael RB, Kenneth DP (1995) Some practical considerations and applications of the National Cancer Institute in vitro anticancer drug discovery screen. Drug Dev Res 34:91–109. doi:10.1002/ddr.430340203

  41. Spasov AA, Yozhitsa IN, Bugaeva LI, Anisimova VA (1999) Benzimidazole derivatives: spectrum of pharmacological activity and toxicological properties (a review). Pharm Chem J 33:232–243. doi:10.1007/BF02510042

    Google Scholar 

  42. Fringuelli R, Milanese L, Schiaffella F (2005) Role of 1,4-benzothiazine derivatives in medicinal chemistry. Mini Rev Med Chem 5:1061–1073. doi:10.2174/138955705774933365

    Google Scholar 

  43. Honda T, Tajima H, Fujisawa K, Murai M, Aono H, Ban M (2008) Preparation of 1,4-benzothiazin-3-ones and related compounds for inhibiting angiogenesis. WO 2008053863, 2008-05-08

  44. Eman MHA, Thoraya AF (2010) Synthesis, reactions, and biological activity of 1,4-benzothiazine derivatives. Monatsh Chem 141:661–667. doi:10.1007/s00706-010-0312-6

    Article  Google Scholar 

  45. Washio Y, Kano K, Harris PA, Sato H, Mori I, West RI, Shibahara M, Toyoda H, Wang L, Nolte RT, Veal JM, Cheung M (2007) Discovery of novel benzimidazoles as potent inhibitors of TIE-2 and VEGFR-2 tyrosine kinase receptors. J Med Chem 50: 4453–4470. doi:10.1021/jm0611051

    Google Scholar 

  46. Rolf S, Alexander N, Christian DK (2006) Metal-mediated inhibition of Escherichia coli methionine aminopeptidase: structure–activity relationships and development of a novel scoring function for metal-ligand interactions. J Med Chem 49:511–522. doi:10.1021/jm050476z

    Article  Google Scholar 

  47. Kristina S, Marijeta K, Katja E, Ivan S, Magdalena G, Krešimir P, Grace KZ (2007) Synthesis, antiviral and antitumor activity of 2-substituted-5-amidino-benzimidazoles. Bioorg Med Chem 15:4419–4426. doi:0.1016/j.bmc.2007.04.032

    Article  Google Scholar 

  48. Ramla MM, Omar MA, Tokuda H, El-Diwani HI (2007) Synthesis and inhibitory activity of new benzimidazole derivatives against Burkitt’s lymphoma promotion. Bioorg Med Chem 15:6489–6496. doi:10.1016/j.bmc.2007.04.010

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The research is financially supported by the National Natural Science Foundation of China (No. 81161120402) and National 863 Program of China (No. 2012AA020303).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1 (PDF 13033 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, X., Xie, X. & Liu, G. Quinazoline-2,4(\(1H,3H\))-diones inhibit the growth of multiple human tumor cell lines. Mol Divers 17, 197–219 (2013). https://doi.org/10.1007/s11030-012-9421-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-012-9421-y

Keywords

Navigation