Skip to main content
Log in

Design, Synthesis, and Anti-Tumor Activity Evaluation In Vitro of 4,6,7–Trisubstituted Quinazoline Derivatives Containing Acrylamide Group

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

Objective: In order to enrich the library of anti-tumor small molecule compounds, 19 compounds, with highly effective anti-tumor, have been designed and synthesized. Methods: MTT assay was used to detect the anti-proliferation activity of 19 compounds on four human tumor cell lines (PC-3, H1975, A549 and Eca-109). Cell cycle experiment, cell migration experiment, cell clone experiment and cell apoptosis experiment were used to study the anti-tumor mechanism of compound (XIVm). Results: The compound (XIVm) showed the strongest anti-tumor activity against the above four human tumor cells, especially against H1975 cells, with an IC50 value of 1.09 ± 0.04 μM, which was significantly lower than that of 5-fluorouracil (5-FU). The results of a variety of cell experiments showed that the compound (XIVm) significant anti-tumor activity, such as inhibiting the proliferation and migration of H1975 cells, arresting H1975 cells at G2/M phase, and inducing apoptosis in H1975 cells. Discussion: Slight changes in the R group can cause significant changes in the in vitro anti-tumor activity. And when R is a strong electron withdrawing group of cyano and trifluoromethyl, compound (XIVm) exhibits the strongest inhibitory effect, with an IC50 value of 1.09 ± 0.04 μM on H1975 cells. Conclusions: 19 compounds showed significant anti-tumor activity, and the compound (XIVm), with a strong electron withdrawing group of cyano and trifluoromethyl, showed the most significant effect, and the anti-proliferation and anti-migration effects of compound (XIVm) was further investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Scheme 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding author upon reasonable request.

REFERENCES

  1. Siegel, R.L., Miller, K.D., Fuchs, H.E., and Jemal, A., CA: Cancer J. Clinicians, 2022, vol. 72, pp. 7–33. https://doi.org/10.3322/caac.21708

    Article  Google Scholar 

  2. Lipengolts, A.A., Finogenova, Y.A., Skribitsky, V.A., and Grigorieva, E.Y., J. Physics: Conf. Series, 2021, vol. 2058, p. 011002. https://doi.org/10.1088/1742-6596/2058/1/012039

    Article  Google Scholar 

  3. Tao, D., Xu, J., Zou, S., Tan, Y., and Ai, S., Medicine (Baltimore), 2021, vol. 100, p. e23471. https://doi.org/10.1097/MD.0000000000023471

  4. Sato, C., Okuda, K., Tamiya, H., Yamamoto, K., Hoshina, K., Narumoto, O., Urushiyama, H., Noguchi, S., Amano, Y., Watanabe, K., Mitani, A., Kage, H., Tanaka, G., Yamauchi, Y., Takai, D., and Nagase, T., Intern. Med., 2018, vol. 57, pp. 557–561. https://doi.org/10.2169/internalmedicine.8996-17

    Article  PubMed  Google Scholar 

  5. Xu, W., Yang, Z., and Lu, N., J. Exp. Clin. Cancer Res., 2016, vol. 35, p. 1. https://doi.org/10.1186/s13046-015-0276-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Li, X., Xu, J., Xie, J., and Yang, W., Chin. Med. J. (Engl.), 2022, vol. 135, pp. 1299–1313. https://doi.org/10.1097/CM9.0000000000002185

    Article  CAS  PubMed  Google Scholar 

  7. Lian, Z., Sang, C., Li, N., Zhai, H., and Bai, W., Front Pharmacol., 2023, vol. 14, p. 1124895. https://doi.org/10.3389/fphar.2023.1124895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rehuman, N.A., Al-Sehemi, A.G., Parambi, D.G.T., Rangarajan, T.M., Nicolotti, O., Kim, H., and Mathew, B., ChemistrySelect, 2021, vol. 6, pp. 7162–7182. https://doi.org/10.1002/slct.202101077

    Article  CAS  Google Scholar 

  9. Wang, D. and Gao, F., Chem. Central J., 2013, vol. 7, p. 95. https://doi.org/10.1186/1752-153X-7-95

    Article  CAS  Google Scholar 

  10. Cohen, M.H., Williams, G.A., Sridhara, R., Chen, G., McGuinn, W.D.Jr., Morse, D., Abraham, S., Rahman, A., Liang, C., Lostritto, R., Baird, A., and Pazdur, R., Clinical Cancer Res., 2004, vol. 10, pp. 1212–1218. https://doi.org/10.1158/1078-0432.CCR-03-0564

    Article  CAS  Google Scholar 

  11. Verhaeghe, P., Dumetre, A., Castera-Ducros, C., Hutter, S., Laget, M., Fersing, C., Prieri, M., Yzombard, J., Sifredi, F., Rault, S., Rathelot, P., Vanelle, P., and Azas, N., Bioorg. Med. Chem. Lett., 2011, vol. 21, pp. 6003–6006. https://doi.org/10.1016/j.bmcl.2011.06.113

    Article  CAS  PubMed  Google Scholar 

  12. Zhang, G., Wang, M., Zhao, J., Wang, Y., Zhu, M., Wang, J., Cen, S., and Wang, Y., Eur. J. Med. Chem., 2020, vol. 206, p. 112706. https://doi.org/10.1016/j.ejmech.2020.112706

    Article  CAS  PubMed  Google Scholar 

  13. Kubacka, M., Kotanska, M., Szafarz, M., Pociecha, K., Waszkielewicz, A.M., Marona, H., Filipek, B., and Mogilski, S., Nutr. Metab. Cardiovasc Dis., 2019, vol. 29, pp. 751–760. https://doi.org/10.1016/j.numecd.2019.04.003

    Article  CAS  PubMed  Google Scholar 

  14. Li, Y., Xiao, J., Zhang, Q., Yu, W., Liu, M., Guo, Y., He, J., and Liu, Y., Bioorg. Med. Chem., 2019, vol. 27, pp. 568–577. https://doi.org/10.1016/j.bmc.2018.12.032

    Article  CAS  PubMed  Google Scholar 

  15. Shagufta and Ahmad, I., Med. Chem. Commun., 2017, vol. 8, pp. 871–885. https://doi.org/10.1039/C7MD00097A

    Article  Google Scholar 

  16. Palazzesi, F., Grundl, M.A., Pautsch, A., Weber, A., and Tautermann, C.S., J. Chem. Inf. Model, 2019, vol. 59, pp. 3565–3571. https://doi.org/10.1021/acs.jcim.9b00316

    Article  CAS  PubMed  Google Scholar 

  17. Amaral, D.N., Lategahn, J., Fokoue, H.H., Silva, E.M.B., Sant'Anna, C.M.R., Rauh, D., Barreiro, E.J., Laufer, S., and Lima, L.M., Sci. Rep., 2019, vol. 9, p. 14. https://doi.org/10.1038/s41598-018-36846-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Heo, Y.A., Drugs, 2018, vol. 78, pp. 693–697. https://doi.org/10.1007/s40265-018-0899-1

    Article  CAS  PubMed  Google Scholar 

  19. Lorthiois, E., Gerspacher, M., Beyer, K.S., Vaupel, A., Leblanc, C., Stringer, R., Weiss, A., Wilcken, R., Guthy, D.A., Lingel, A., Bomio-Confaglia, C., Machauer, R., Rigollier, P., Ottl, J., Arz, D., Bernet, P., Desjonqueres, G., Dussauge, S., Kazic-Legueux, M., Lozac’h, M.A., Mura, C., Sorge, M., Todorov, M., Warin, N., Zink, F., Voshol, H., Zecri, F.J., Sedrani, R.C., Ostermann, N., Brachmann, S.M., and Cotesta, S., J. Med. Chem., 2022, vol. 65, pp. 16173–16203. https://doi.org/10.1021/acs.jmedchem.2c01438

    Article  CAS  PubMed  Google Scholar 

  20. Jia, H.W., Yang, H.L., Xiong, Z.L., Deng, M.H., Wang, T., Liu, Y., and Cheng, M., Bioorg. Chem., 2022, vol. 129, p. 106213.

    Article  CAS  PubMed  Google Scholar 

  21. Zhao, Y., Feng, J.H., Ding, H.X., Xiong, Y., Cheng, C.H.K., Hao, X.J., Zhang, Y.M., Pan, Y.J., Guéritte, F., Wu, X.M., Bai, H. and Stöckigt, J., J. Natural Prod., 2006, vol. 69, pp. 1145–1152. https://doi.org/10.1021/np050547x

    Article  CAS  Google Scholar 

  22. Grela, E., Kozlowska, J., and Grabowiecka, A., Acta. Histochem., 2018, vol. 120, pp. 303–311. https://doi.org/10.1016/j.acthis.2018.03.007

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the the National Natural Science Foundation of China (no. U21A20416).

Author information

Authors and Affiliations

Authors

Contributions

The authors GD, YZ, and WS—carried out the experiment, analyzed and interpreted the data, and wrote the manuscript. The authors CL, YF, and WH—contributed to sample preparation. The authors SX and GC—helped to supervise the data analysis. The authors KY, LH, and ZQ—supervised and defend the findings of this work and revised the manuscript.

Corresponding authors

Correspondence to Ke Yu, Liu Hongmin or Zhang Qiurong.

Ethics declarations

This article does not contain any studies involving patients or animals as test objects.

Informed consent was not required for this article. No conflict of interest was declared by the authors.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dongling, G., Zichen, Y., Shihao, W. et al. Design, Synthesis, and Anti-Tumor Activity Evaluation In Vitro of 4,6,7–Trisubstituted Quinazoline Derivatives Containing Acrylamide Group. Russ J Bioorg Chem 50, 530–543 (2024). https://doi.org/10.1134/S1068162024020031

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162024020031

Keywords:

Navigation