Skip to main content

Advertisement

Log in

On the information expressed in enzyme structure: more lessons from ribonuclease A

  • Full-Length Paper
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Brownian computations were directed at Ribonuclease A (RNase A) and variants in folded states so as to quantify information of the statistical type at the atom/covalent bond level. This advanced the research reported in this journal last year on the information properties of enzyme primary structure. Brownian computation data are illustrated for a sixteen-member library. The results identify signature traits that distinguish the folded wild type (WT) molecule from variants. The distinctions are explainable in terms of correlated information and dispersion energy. The Brownian tools used for this study can be directed at other protein families (e.g., kinases, isomerases, etc.) in rapid screening, QSAR, and design applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PDB:

Protein data bank

RNase A:

Ribonuclease A

RNA:

Ribonucleic acid

QSAR:

Quantitative structure activity relation

CI:

Correlated information

MI:

Mutual information

WT:

Wild type

ABA:

Atom-bond-atom

1D:

One dimensional

3D:

Three dimensional

References

  1. Smyth DG, Stein WH, Moore S (1963) The sequence of amino acid residues in bovine pancreatic ribonuclease: revisions and confirmations. J Biol Chem 238: 227–234

    CAS  Google Scholar 

  2. Chatani E, Hayashi R, Moriyama H, Ueki T (2002) Conformational strictness required for maximum activity and stability of bovine pancreatic ribonuclease A as revealed by crystallographic study of three Phe120 mutantsat 1.4 Å resolution. Protein Sci 11: 72–81. doi:10.1110/ps.31102

    Article  PubMed  CAS  Google Scholar 

  3. Park C, Schultz LW, Raines RT (2001) Contribution of the active site histidine residues of Ribonuclease A to nucleic acid binding. Biochemistry 40: 4949–4956. doi:10.1021/bi0100182

    Article  PubMed  CAS  Google Scholar 

  4. Pearson MA, Karplus PA, Dodge RW, Laity JH, Scheraga HA (1998) Crystal structures of two mutants that have implications for the folding of bovine pancreatic ribonuclease A. Protein Sci 7: 1255–1258. doi:10.1002/pro.5560070522

    Article  PubMed  CAS  Google Scholar 

  5. Fisher BM, Schultz LW, Raines RT (1998) Coulombic effects of remote subsites on the active site of ribonuclease A. Biochemistry 37: 17386–17401. doi:10.1021/bi981369s

    Article  PubMed  CAS  Google Scholar 

  6. Raines RT (1998) Ribonuclease A. Chem Rev 98: 1045–1066. doi:10.1021/cr960427h

    Article  PubMed  CAS  Google Scholar 

  7. Keleman BR, Schultz LW, Sweeney RY, Raines RT (2000) Excavating an active site: the nucleobase specificity of ribonuclease A. Biochemistry 39: 14487–14494. doi:1021/bi001862f

    Article  Google Scholar 

  8. Hopfinger AJ, Duca JS (2001) Estimation of molecular similarity based on 4D-QSAR analysis: formalism and validation. J Chem Inf Comput Sci 41: 1367–1387. doi:10.1021/ci0100090

    PubMed  Google Scholar 

  9. Godden JW, Stahura FL, Bajorath J (2000) Variability of molecular descriptors in compound databases revealed by Shannon entropy calculations. J Chem Inf Comput Sci 40: 796–800. doi:10.1021/ci000321u

    PubMed  CAS  Google Scholar 

  10. Stahura FL, Godden JW, Xue L, Bajorath J (2000) Distinguishing between natural products and synthetic molecules by descriptor Shannon entropy analysis and binary QSAR calculations. J Chem Inf Comput Sci 40: 1245–1252. doi:10.1021/ci0003303

    PubMed  CAS  Google Scholar 

  11. Bajorath J (2000) Chemoinformatics methods for systematic comparison of molecules from natural and synthetic sources and design of hybrid libraries. Mol Divers 5: 305–313. doi:10.1023/A:1021321621406

    Article  CAS  Google Scholar 

  12. Sadowski J, Kubinyl H (1998) A scoring scheme for discriminating between drugs and nondrugs. J Med Chem 41: 3325–3329. doi:10.1021/jm9706776

    Article  PubMed  CAS  Google Scholar 

  13. Ajay Walters WP, Murcko MA (1998) Can we learn to distinguish between “drug-like” and “nondrug-like” molecules?.  J Med Chem 41: 3314–3324. doi:10.1021/jm970666c

    Article  Google Scholar 

  14. González-Díaz H, Saiz-Urra L, Molina R, Santana L, Uriarte E (2007) A model for the recognition of protein kinases based on the entropy of 3D van der Waals interactions. J Proteome Res 6: 904–908. doi:10.1021/pr060493s

    Article  PubMed  Google Scholar 

  15. Agüero-Chapin G, González-Díaz H, de la Riva G, Rodríguez E, Sánchez-Rodríguez A, Podda G, Vázquez-Padrón RI (2008) MMM-QSAR recognition of ribonucleases without alignment: comparison with an HMM model and isolation from Schizosaccharomyces pombe, prediction, and experimental assay of a new sequence. J Chem Inf Model 48: 434–448. doi:10.1021/ci7003225

    Article  PubMed  Google Scholar 

  16. González-Díaz H, Dea-Ayuela MA, Pérez-Montoto LG, Prado-Prado FJ, Agüero-Chapín G, Bolas-Fernández F (2009) QSAR for RNases and theoretic-experimental study of molecular diversity on peptide mass fingerprints of a new Leishmania infantum protein. Mol Divers 14: 349–369. doi:10.1007/s11030-009-9178-0

    Article  PubMed  Google Scholar 

  17. McGaughey GB, Culberson JC, Feuston BP, Kreatsoulas C, Maiorov V, Shpungin J (2006) Scoring of KDR kinase inhibitors: using interaction energy as a guide for ranking. Mol Divers 10: 341–347. doi:10.1007/s11030-006-99037-1

    Article  PubMed  CAS  Google Scholar 

  18. Roy DR, Sarkar U, Chataraj PK, Mitra A, Padmanabhan J, Parthasarathi R, Subramanian V, Van Damme S, Bultinck P (2006) Analyzing toxicity through electrophilicity. Mol Divers 10: 119–131. doi:10.1007/s11030-005-9009-x

    Article  PubMed  CAS  Google Scholar 

  19. Tanabe K, Lucic B, Amic D, Kurita T, Kaihara M, Onodera N, Suzuki T (2010) Prediction of carcinogenicity for diverse chemicals based on substructure grouping and SVM modeling. Mol Divers 14: 789–802. doi:10.1007/s11030-010-9232-y

    Article  PubMed  CAS  Google Scholar 

  20. Petit B, Potenzone R Jr, Hopfinger AJ, Klopman G, Shapiro M (1979) A hierarchal QSAR molecular structure calculator applied to a carcinogenic nitrosamine data base. In: ACS Symposium Series on computer-assisted drug design, chap 25. pp 553–581. doi:10.1021/bk-1979-0112.ch025

  21. Graham DJ, Greminger JL (2009) On the information expressed in enzyme primary structure: lessons from ribonuclease A. Mol Divers 14: 673–686. doi:10.1007/s11030-009-9211-3

    Article  PubMed  Google Scholar 

  22. Bennett CH (1982) Thermodynamics of computation—a review. Intl J Theo Phys 21: 905–940. doi:10.1007/BF02084158

    Article  CAS  Google Scholar 

  23. Tribus M, McIrvine EC (1971) Energy and information. Sci Am 225: 179–184

    Article  Google Scholar 

  24. Graham DJ, Malarkey C, Schulmerich MV (2004) Information content in organic molecules: quantification and statistical structure via Brownian processing. J Chem Inf Comput Sci 44: 1601–1611. doi:10.1021/ci0400213

    PubMed  CAS  Google Scholar 

  25. Graham DJ, Schulmerich MV (2004) Information content in organic molecules: reaction pathway analysis via Brownian processing. J Chem Inf Comput Sci 44: 1612–1622. doi:10.1021/ci040022v

    PubMed  CAS  Google Scholar 

  26. Graham DJ (2005) Information content and organic molecules: aggregation states and solvent effects. J Chem Inf Model 45: 1223–1236. doi:10.1021/ci050101m

    Article  PubMed  CAS  Google Scholar 

  27. Kadonoso T, Chatani E, Hayashi R, Moriyama H, Ueki T (2003) Minimization of cavity size ensures protein stability and folding: structures of Phe46-replaced bovine pancreatic RNase A. Biochemistry 42: 10651–10658. doi:10.1021/bi034499w

    Article  Google Scholar 

  28. Schultz LW, Hargraves SR, Klink TA, Raines RT (1998) Structure and stability of the P93G variant of ribonuclease A. Protein Sci 7: 1620–1625. doi:10.1002/pro.5560070716

    Article  PubMed  CAS  Google Scholar 

  29. Schultz LW, Quirk DJ, Raines RT (1998) His. . .Asp catalytic dyad of ribonuclease A: structure and function of the wild-type, D121N, and D121A enzymes. Biochemistry 37: 8886–8898. doi:10.1021/bi972766q

    Article  PubMed  CAS  Google Scholar 

  30. Pauling L (1970) General chemistry, appendix VIII. Dover, New York

    Google Scholar 

  31. Kittel C (1986) Elementary statistical physics, chap 6. Dover, New York

    Google Scholar 

  32. Dyer KD, Rosenberg HF (2006) The RNase A superfamily: generation of diversity and innate host defense. Mol Divers 10: 585–597. doi:10.1007/s11030-006-9028-2

    Article  PubMed  CAS  Google Scholar 

  33. Ashcroft NW, Mermin ND (1976) Solid state physics, chap 30. Holt, Rinehart, and Winston, New York

    Google Scholar 

  34. Blake CC, Koenig DF, Mair GA, North AC, Phillips DC, Sarma VR (1965) A three-dimensional Fourier at synthesis 2 Angstrom resolution. Nature 206: 757–761. doi:10.1038/35090602

    Article  PubMed  CAS  Google Scholar 

  35. Anfinsen CB (1973) Principles that govern the folding of protein chains. Science 181: 223–230. doi:10.1126/science.181.4096.223

    Article  PubMed  CAS  Google Scholar 

  36. Ogawa T (2006) Molecular diversity of proteins in biological and defense systems. Mol Divers 10: 511–514. doi:10.1007/s11030-006-9048-y

    Article  PubMed  CAS  Google Scholar 

  37. Zeldovich KB, Shakhnovich EI (2008) Understanding protein evolution: from protein physics to Darwin selection. Ann Rev Phys Chem 59: 105–127. doi:10.1146/annurev.physchem.58.032806.104449

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J. Graham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graham, D.J., Greminger, J.L. On the information expressed in enzyme structure: more lessons from ribonuclease A. Mol Divers 15, 769–779 (2011). https://doi.org/10.1007/s11030-011-9307-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-011-9307-4

Keywords

Navigation