Skip to main content

Advertisement

Log in

Prediction of binding affinity for estrogen receptor α modulators using statistical learning approaches

  • Full Length Paper
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

The estrogen receptor (ER), an important drug target for the therapy of breast cancers, received a great deal of attention during recent years. This work aimed at finding more potent and selective ER modulators through the investigations of multiple ligand–receptor interactions by exploring the relationship between the experimental and predicted pIC50 values using in silico methods. A Bayesian-regularized neural network combined with principal component analysis has been conducted on a set of ER α modulators (127 molecules), resulting in the correlation coefficients of 0.91 ± 0.02, 0.87 ± 0.04 and 0.90 ± 0.02 for the training set (64 molecules), cross-validation set (32 molecules) and independent test (31 molecules), respectively. Meanwhile, a multiple linear regression (MLR) method has also been applied in order to explore the most important variables related to the biological activities. The proposed MLR model obtains a reasonable predictivity of pIC50 (R  =  0.72, Q  =  0.79) and makes use of four molecular descriptors, namely, Xvch6, nelem, SsssCH and SaaN. All these results prove the reliabilities of the in silico models, which should be useful not only for the screening but also for the rational design of novel ER α modulators with improved potency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nilsson S, Gustafsson J-A (2002) Biological role of estrogen and estrogen receptors. Crit Rev Biochem Mol Biol 37: 1–28 doi:10.1080/10409230290771438

    Article  PubMed  CAS  Google Scholar 

  2. Green S, Walter P, Kumar V, Krust A, Bornert JM, Argos P et al (1986) Human estrogen receptor cDNA: sequence, expression and homology to v-erb-A. Nature 320: 134–139 doi:10.1038/320134a0

    Article  PubMed  CAS  Google Scholar 

  3. Ascenzi P, Bocedi A, Marino M (2006) Structure–function relationship of estrogen receptor α and β: impact on human health. Mol Aspects Med 27: 299–402 doi:10.1016/j.mam.2006.07.001

    Article  PubMed  CAS  Google Scholar 

  4. White INH (1999) The tamoxifen dilemma. Carcinogenesis 20: 1153–1160 doi:10.1093/carcin/20.7.1153

    Article  PubMed  CAS  Google Scholar 

  5. Maricic M, Gluck O (2002) Review of raloxifene and its clinical applications in osteoporosis. Expert Opin Pharmacother 3: 767–775 doi:10.1517/14656566.3.6.767

    Article  PubMed  CAS  Google Scholar 

  6. Miller CP (2002) SERMs: evolutionary chemistry, revolutionary biology. Curr Pharm Des 8: 2089–2111 doi:10.2174/1381612023393404

    Article  PubMed  CAS  Google Scholar 

  7. Fang H, Tong W, Shi LM, Blair R, Perkins R, Branham W et al (2001) Structure–activity relationships for a large diverse set of natural, synthetic, and environmental estrogens. Chem Res Toxicol 14: 280–294 doi:10.1021/tx000208y

    Article  PubMed  CAS  Google Scholar 

  8. Eertmans F, Dhooge W, Stuyvaert S, Comhaire F (2003) Comhaire endocrine disruptors: effects on male fertility and screening tools for their assessment. Toxicol In Vitro 17: 515–524 doi:10.1016/S0887-2333(03)00121-8

    Article  PubMed  CAS  Google Scholar 

  9. Ibarreta D, Daxenberger A, Meyer HH (2001) Possible health impact of phytoestrogens and xenoestrogens in food. APMIS 109: 161–184 doi:10.1034/j.1600-0463.2001.090301.x

    Article  PubMed  CAS  Google Scholar 

  10. Bryant HU (2002) Selective estrogen receptor modulators. Rev Endocr Metab Disord 3: 231–241 doi:10.1023/A:1020076426727

    Article  PubMed  CAS  Google Scholar 

  11. Jordan VC (2003) Antiestrogens and selective estrogen receptor modulators as multifunctional medicines. 2. Clinical considerations and new agents. J Med Chem 46: 1081–1111 doi:10.1021/jm020450x

    Article  PubMed  CAS  Google Scholar 

  12. Meegan MJ, Lloyd DG (2003) Advances in the science of estrogen receptor modulation. Curr Med Chem 10: 181–210

    PubMed  CAS  Google Scholar 

  13. Brzozowski AM, Pike AC, Dauter Z, Hubbard RE, Bonn T, Engstrom O et al (1997) Molecular basis of agonism and antagonism in the oestrogen receptor. Nature 389: 753–758 doi:10.1038/39645

    Article  PubMed  CAS  Google Scholar 

  14. MacGregor JI, Jordan VC (1998) Basic guide to the mechanisms of antiestrogen action. Pharmacol Rev 50: 151–196

    PubMed  CAS  Google Scholar 

  15. Hong H, Tong W, Fang H, Shi L, Xie Q, Wu J et al (2002) Prediction of estrogen receptor binding for 58,000 chemicals using an integrated system of a tree-based model with structural alerts. Environ Health Perspect 110: 29–36

    PubMed  CAS  Google Scholar 

  16. Chen JJ, Tsai C-A, Moon H, Ahn H, Young JJ, Chen CH (2006) Decision threshold adjustment in class prediction. SAR QSAR Environ Res 17: 337–352 doi:10.1080/10659360600787700

    Article  PubMed  CAS  Google Scholar 

  17. Asikainen A, Kolehmainen M, Ruuskanen J, Tuppurainen K (2006) Structure–based classification of active and inactive estrogenic compounds by decision tree, LVQ and kNN methods. Chemosphere 62: 658–673 doi:10.1016/j.chemosphere.2005.04.115

    Article  PubMed  CAS  Google Scholar 

  18. Li H, Ung CY, Yap CW, Xue Y, Li ZR, Chen YZ (2006) Prediction of estrogen receptor agonists and characterization of associated molecular descriptors by statistical learning methods. J Mol Graph Model 25: 313–323 doi:10.1016/j.jmgm.2006.01.007

    Article  PubMed  CAS  Google Scholar 

  19. Salum LB, Polikarpov I, Andricopulo AD (2007) Structural and chemical basis for enhanced affinity and potency for a large series of estrogen receptor ligands: 2D and 3D QSAR studies. J Mol Graph Model 26: 34–42 doi:10.1016/j.jmgm.2007.02.001

    Google Scholar 

  20. Chen HY, Dykstra KD, Birzin ET, Frisch K, ChanW, Yang YT et al (2004) Estrogen receptor ligands. Part 1. The discovery of flavanoids with subtype selectivity. Bioorg Med Chem Lett 14:1417–1421. doi:10.1016/j.bmcl.2004.01.031

    Article  PubMed  CAS  Google Scholar 

  21. Chen HY, Kim S, Wu JY, Birzin ET, Chan W, Yang YT et al (2004) Estrogen receptor ligands. Part 3. The SAR of dihydrobenzoxathiin SERMs. Bioorg Med Chem Lett 14 3: 2551–2554 doi:10.1016/j.bmcl.2004.02.084

    Article  CAS  Google Scholar 

  22. Kim S, Wu J, Chen HY, Birzin ET, Chan W, Yang YT et al (2004) . Bioorg Med Chem Lett 14: 2741–2745 doi:10.1016/j.bmcl.2004.03.074

    Article  PubMed  CAS  Google Scholar 

  23. Kim S, Wu JY, Birzin ET, Frisch K, Chan W, Pai LY et al (2004) Estrogen receptor ligands II, Discovery of benzoxathiins as potent, selective estrogen receptor α modulators. J Med Chem 47: 2171–2175 doi:10.1021/jm034243o

    Article  PubMed  CAS  Google Scholar 

  24. Tan Q, Birzin ET, Chan W, Yang YT, Pai LY, Hayes EC et al (2004) Estrogen receptor ligands. Part 6. Synthesis and binding affinity of dihydrobenzodithiins. Bioorg Med Chem Lett 14: 3753–3755 doi:10.1016/j.bmcl.2004.04.101

    Article  PubMed  CAS  Google Scholar 

  25. Tan Q, Birzin ET, Chan W, Yang YT, Pai LY, Hayes EC et al (2004) Estrogen receptor ligands. Part 5. The SAR of dihydrobenzoxathiins containing modified basic side chains. Bioorg Med Chem Lett 14: 3747–3751 doi:10.1016/j.bmcl.2004.04.100

    Article  PubMed  CAS  Google Scholar 

  26. Tan Q, Blizzard TA, Morgan JD II, Birzin ET, Chan W, Yang YT et al (2005) Estrogen receptor ligands. Part 10. Chromanes: old scaffolds for new SERAMs. Bioorg Med Chem Lett 15: 1675–1681 doi:10.1016/j.bmcl.2005.01.046

    Article  PubMed  CAS  Google Scholar 

  27. Blizzard TA, DiNinno F, Morgan JD II, Wu JY, Chen HY, Kim S et al (2004) Estrogen receptor ligands. Part 8. Dihydrobenzoxathiin SERAMs with heteroatomsubstituted side chains. Bioorg Med Chem Lett 14: 3865–3868 doi:10.1016/j.bmcl.2004.05.073

    Article  PubMed  CAS  Google Scholar 

  28. Blizzard TA, DiNinno F, Morgan JD, Chen HY II, Wu JY, Gude C et al (2004) Estrogen receptor ligands. Part 7. Dihydrobenzoxathiin SERAMs with bicyclic amine side chains. Bioorg Med Chem Lett 14: 3664–3861

    Google Scholar 

  29. Blizzard TA, DiNinno F, Chen HY, Kim S, Wu JY, Chan W et al (2005) Estrogen receptor ligands. Part 13. Dihydrobenzoxathiin SERAMs with an optimized antagonist side chain. Bioorg Med Chem Lett 15: 3912–3916 doi:10.1016/j.bmcl.2005.05.089

    Article  PubMed  CAS  Google Scholar 

  30. Blizzard TA, Dininno F, Morgan JD II, Chen HY, Wu JY, Kim S et al (2005) Estrogen receptor ligands. Part 9. Dihydrobenzoxathiin SERAMs with alkyl substituted pyrrolidine side chains and linkers. Bioorg Med Chem Lett 15: 107–113 doi:10.1016/j.bmcl.2004.10.036

    Article  PubMed  CAS  Google Scholar 

  31. Wang Y, Li Y, Yang S-L, Yang L (2005) An in silico approach for screening flavonoids as P-glycoprotein inhibitors based on bayesian-regularized neural network. J Comput Aided Mol Des 19: 137–147 doi:10.1007/s10822-005-3321-5

    Article  PubMed  CAS  Google Scholar 

  32. Wang Y, Li Y, Yang S-L, Yang L (2005) Classification of substrates and inhibitors of P-Glycoprotein using unsupervised machine learning approach. J Chem Inf Comput Sci 45: 750–757 doi:10.1021/ci050041k

    CAS  Google Scholar 

  33. Wang Y, Li Y, Wang B (2007) An in Silico method for screening nicotine derivatives as cytochrome P450 2A6 selective inhibitors based on kernel partial least squares. Int J Mol Sci 8: 166– 179

    Article  CAS  Google Scholar 

  34. Kier LB, Hall LH (1999) Molecular structure description: the electrotopological state. Academic Press, San Diego

    Google Scholar 

  35. Moriguchi I, Hirono S, Nakagome I, Hirano H (1994) Comparison of reliability of log P values for drugs calculated by several methods. Chem Pham Bull 42: 976–978

    CAS  Google Scholar 

  36. Hansch C, Leo A (1979) Substituent constants for correlation analysis in chemistry and biology. Wiley, New York

    Google Scholar 

  37. Alves CN, Pinheiro JC, Camargo AJ, Ferreira MMC, Romero RAF, da Silva ABF (2001) A multiple linear regression and partial least squares study of flavonoid compounds with anti-HIV activity. J Mol Struct THEOCHEM 541: 81–88 doi:10.1016/S0166-1280(00)00755-7

    Article  CAS  Google Scholar 

  38. MacKay DJC (1992) Bayesian interpolation. Neural Comput 4: 415–447 doi:10.1162/neco.1992.4.3.415

    Article  Google Scholar 

  39. MacKay DJC (1992) A practical bayesian framework for backprop networks. Neural Comput 4: 448–472 doi:10.1162/neco.1992.4.3.448

    Article  Google Scholar 

  40. MacKay DJC (1995) Probable networks and plausible predictions-a review of practical Bayesian methods for supervised neural networks. Netw Comput Neural Syst 6: 469–505 doi:10.1088/0954-898X/6/3/011

    Article  Google Scholar 

  41. Foresee FD, Hagan MT (1997) Gauss–Newton approximation to Bayesian regularization. Proceedings of the 1997 International Joint Conference on neural network 3: 1930–1935

    Google Scholar 

  42. Hagan MT, Menhaj MB (1994) Training feed forward networks with Marquardt algorithm. IEEE Trans Neural Netw 5: 989–993 doi:10.1109/72.329697

    Article  PubMed  CAS  Google Scholar 

  43. Nguyen D, Widrow B (1990) Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights. Proc Int Joint Conf Neural Netw 3: 21–26 doi:10.1109/IJCNN.1990.137819

    Article  Google Scholar 

  44. Wold S, Esbensen K, Geladi P (1987) Principal component analysis. Chemom Intell Lab Syst 2: 37–52 doi:10.1016/0169-7439(87)80084-9

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonghua Wang.

Electronic Supplementary Material

The Below is the Electronic Supplementary Material.

ESM 1 (XLS 780 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Li, Y., Ding, J. et al. Prediction of binding affinity for estrogen receptor α modulators using statistical learning approaches. Mol Divers 12, 93–102 (2008). https://doi.org/10.1007/s11030-008-9080-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-008-9080-1

Keywords

Navigation