Skip to main content
Log in

Evolutionary computation and multimodal search: A good combination to tackle molecular diversity in the field of peptide design

  • Full-length paper
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Summary

The awesome degree of structural diversity accessible in peptide design has created a demand for computational resources that can evaluate a multitude of candidate structures. In our specific case, we translate the peptide design problem to an optimization problem, and use evolutionary computation (EC) in tandem with docking to carry out a combinatorial search. However, the use of EC in huge search spaces with different optima may pose certain drawbacks. For example, EC is prone to focus a search in the first good region found. This is a problem not only because of the undesirable and automatic rejection of potentially good search space regions, but also because the found solution may be extremely difficult to synthesize chemically or may even be a false docking positive. In order to avoid rejecting potentially good solutions and to maximize the molecular diversity of the search, we have implemented evolutionary multimodal search techniques, as well as the molecular diversity metric needed by the multimodal algorithms to measure differences between various regions of the search space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

EC:

evolutionary computation

ENPDA:

Evolutionary structure-based de Novo Peptide Design Algorithm

POP:

prolyl oligopeptidase

ADME/Tox:

absorption, distribution, metabolism, excretion, and toxicity

QSAR:

quantitative structure-activity relationship

GA:

genetic algorithm

References

  1. Newman D.J., Cragg M., Snader K.M. (2003). Natural products as sources of new drugs over the period 1981–2002. J. Nat. Products 66:1022–1037

    Article  CAS  Google Scholar 

  2. Hall H.L., Hall H.L. (2005). Qsar modeling based on structure-information for properties of interest in human health. SAR QSAR Environ. Res. 16:13–41

    Article  CAS  Google Scholar 

  3. Floyd C.D., Leblanc C., Whittaker M. (1999). Combinatorial chemistry as a tool for drug discovery. Prog. Med. Chem. 36:91–168

    Article  CAS  Google Scholar 

  4. Vila J., Sanchez-Cespedes J., Giralt E. (2005). Old and new strategies for the discovery of antibacterial agents. Curr. Med. Chem.: Anti-Infective Agents 4:337–353

    Article  CAS  Google Scholar 

  5. Bravo, J. and Aloy, P. Target selection for complex structural genomics. Curr. Opin. Struct. Biol., 16 (2006)

  6. Holland, J. Adaptation in Natural and Artificial Systems. MIT Press, 1975

  7. Belda I., Madurga S., Llorà X., Martinell M., Tarragó T., Piqueras M.G., Nicolás E., Giralt E. (2005). Evolutionary algorithms and phde novo design. J. Computer-Aided Mol. Design 19:585–601

    Article  CAS  Google Scholar 

  8. Vajda S., Camacho C.J. (2004). Protein-protein docking: is the glass half-full or half-empy. Trend. Biotechnol. 22:110–116

    Article  CAS  Google Scholar 

  9. Goldberg, D. E. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, 1989

  10. Yoshimoto T., Fischl M., Orlowski R., Walter R. (1978). Post-proline cleaving enzyme and post-proline dipeptidyl aminopeptidase. Comparison of two peptidases with high specificity for proline residues. J. Biol. Chem. 253:3708–3716

    CAS  Google Scholar 

  11. Fogel, G. B. and Corne, D. W., (Eds.). Evolutionary Computation in Bioinformatics. Elsevier Science, 2002

  12. Wang R., Gao Y., Lai L. (2000). Ligbuilder: A multi-purpose pogram for structure-based drug design. J. Mol. Model. 6:498–516

    Article  CAS  Google Scholar 

  13. Teixido M., Belda I., Rosello X., Gonzalez S., Fabre M., Llorà X., Bacardit J., Garrell J.M., Vilaro S., Albericio F., Giralt E. (2003). Development of a genetic algorithm to design and identify peptides that can cross the blood-brain barrier. QSAR Combinat. Sci. 22:745–753

    Article  CAS  Google Scholar 

  14. Patel, S., Stott, I., Bhakoo, M. and Elliott, P. Patenting evolved bactericidal peptides. In: Corne D.W. and Bentley P.J. (eds.), Creative Evolutionary Systems, Morgan Kaufmann Publishers, 2001, pp. 525–545

  15. Kamphausen S., Höltgen N., Wirsching F., Morys-Wortmann C., Riester D., Goetz R., Thürk M., Schwienhorst A. (2002). Genetic algorithm for the design of molecules with desired properties. J. Computer-Aided Mol. Des. 16:551–567

    Article  CAS  Google Scholar 

  16. Michaud, S.R., Zydallis, J.B., Lamont, G. L. and Pachter, R. Detecting secondary peptide structures by scaling a genetic algorithm. In: Technical Proceedings of the 2001 International Conference on Computational Nanoscience and Nanotechnology, 2001, pp.␣29–32

  17. Goh, G. K.-M. and Foster, J. A., Evolving molecules for drug design using genetic algorithms via molecular trees. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2000). Morgan Kaufmann, 2000, pp. 27–33

  18. Yamashita F., Wanchana S., Hashida M. (2002). Quantitative structure/property relationship analysis of caco-2 permeability using a genetic algorithm-based partial least squares method. J. Pharm. Sci., 91:2230–2238

    Article  CAS  Google Scholar 

  19. Morris G., Goodsell D., Halliday R., Huey R., Belew R., Olson A. (1998). Automated docking using a lamarckian genetic algorithm and and empirical binding free energy function. J. Comp. Chem. 19:1639–1662

    Article  CAS  Google Scholar 

  20. Shoichet B., McGovern S., Wei B., Irwin J. (2002). Lead discovery using molecular docking. Curr. Opin. Chem. Biol. 6:439–446

    Article  CAS  Google Scholar 

  21. Budin N., Majeux N., Tenette C., Caflisch A. (2001). Structure-based ligand design by a build-up approach and genetic algorithm search in conformational space. J. Comp. Chem. 22:1956–1970

    Article  CAS  Google Scholar 

  22. Douglet D., Thoreau E., Grassy G. (2000). A genetic algorithm for the automated generation of small organic molecules: drug design using an evolutionary algorithm. J. Computer-aided Mol. Des. 14:449–466

    Article  Google Scholar 

  23. Scheider G., Lee M., Stahl M., Schneider P. (2000). De novo design of molecular architectures by evolutionary assembly of drug-derived building blocks. J. Computer-Aided Mol. Des. 14:487–494

    Article  Google Scholar 

  24. Koza, J. R., Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, 1992

  25. Miller, B. L. and Goldberg, D. E., Genetic algorithms, tournament selection, and the effects of noise. Technical Report 95006, IlliGAL, University of Illinois, at Urbana-Champaign, Illinois, USA, 1995

  26. Baker, J. E., Adaptative selection methods for genetic algorithms. In: Proceedings of the First International Conference on Genetic Algorithms. Erlbaum, 1987

  27. Pelikan, M., Goldberg, D. E. and Cantú-Paz, E., BOA: The bayesian optimization algorithm. In: Proceedings of the Genetic and Evolutionary Computation Conference GECCO-99. Morgan Kaufmann, 1999, pp. 525–532

  28. Krasnogor, N. Studies on the Theory and Design Space of Memetic Algorithms. PhD thesis, University of the West England, Bristol, 2002

  29. Baluja, S. and Caruana, R. Removing the genetics from standard genetic algorithm. In: Prieditis A. and Russell S. (eds.), Proceedings of the International Conference on Machine Learning, Morgan Kaufmann, 1995, pp. 112–128

  30. Michalewicz, Z. Genetic Algorithms + Data Structures = Evolution Programs. Springer, 1992.

  31. Belda I., Llorà X., Giralt E. (2006). Evolutionary algorithms and de novo peptide design. Soft Computing: A Fusion of Foundations, Methodologies and Applications 10:295–304

    Google Scholar 

  32. Belda, I., Llorà, X., Martinell, M., Tarragó, T. and Giralt, E., Computer-aided peptide evolution for virtual drug design. (Genetic and Evolutionary Computation Conference-GECCO 2004. Also available as IlliGAL technical report, No. 2004015). Springer-Verlag, 2004, pp. 321–332

  33. Cantú-Paz, E., Efficient and Accurate Parallel Genetic Algorithms. Kluwer Academic Publishers, 2002.

  34. Macke, T. and Case, D. NAB User’s Manual. Departament of Molecular Biology, The Scripps Research Institute, University of California, La Jolla, California, 1999.

  35. Berman H.M., Westbrook J., Feng Z., Gilliland G., Bhat T.N., Weissig H., Shindyalov I.N., Bourne P.E. (2000). The protein data bank. Nucl. Acid. Res. 28:235–242

    Article  CAS  Google Scholar 

  36. Streichert, F., Stein, G., Ulmer, H. and Zell, A., A clustering based niching ea for multimodal search spaces. In: Proceedings of the 6th International Conference Evolution Artificielle. Springer-Verlag, 2003, pp. 293–304

  37. Beasley D., Bull D.R., Martin R.R. (1993). An overview of genetics algorithms: Part 1, fundamentals. University Computing 15:58–69

    Google Scholar 

  38. Pelikan, M. and Goldberg, D. E., Escaping hierarchical traps with competent genetic algorithms. Technical report, IlliGAL, No. 2001003, 2001

  39. Goldberg, D. E., The Design of Innovation, Kluwer Academic Publishers, 2002

  40. DeJong, K., The Analysis and behaviour of a Class of Genetic Adaptative Systems. PhD thesis, University of Michigan, 1975

  41. Mengshoel, O. and Goldberg, D. E., Probabilistic crowding: Deterministic crowding with probabilistic replacement. In: Proceedings of the Genetic and Evolutionary Computation Conference GECCO-1999. Morgan Kaufmann, 1999, pp. 409–416

  42. Back, T., Evolutionary Algorithms in Theory and Practice. Oxford University Press, 1997

  43. Tsujimura, Y. and Gen, M., Entropy-based genetic algorithm for solving tsp. In: Proceedings of the 2nd International Conference on Knowledge-based intelligent electronic systems). IEEE, 1988, pp. 285–290

  44. Larrañaga, P. and Lozano, J., (Eds.) Estimation of Distribution Algorithms, Kluwer Academic Publishers, 2002

  45. Linde Y., Buzo A., Gray R.M. (1980). An algorithm for vector quantization design. IEEE Trans. Comm. 28:84–95

    Article  Google Scholar 

  46. Black S.D., Mould D.R. (1991). Development of hydrophobicity parameters to analyze proteins which bear post- or cotranslational modifications. Anal. Biochem. 193:72–82

    Article  CAS  Google Scholar 

  47. Goossens F., Meester I.D., Vanhoof G., Scharpé S. (1996). Distribution of prolyl oligopeptidase in human peripheral tissues and body fluids. Eur. J. Clin. Chem. Clin. Biochem. 34:17–22

    CAS  Google Scholar 

  48. Fülöp V., Bocskei Z., Polgár L. (1998). Prolyl oligopeptidase: an unusual b-propeller domain regulates proteolysis. Cell 94:161–170

    Article  Google Scholar 

  49. Mentlein R. (1988). Proline residues in the maturation and degradation of peptide hormones and neuropeptides. FEBS Lett. 234:251–256

    Article  CAS  Google Scholar 

  50. Maes M., Goossens F., Scharpé S., Calabrese J., Desnyder R., Meltzer H. (1995). Alterations in plasma prolyl endopeptidase activity in depression, mania, and schizophrenia: Effects of antidepressants, mood stabilizers, and antipsychotic drugs. Psychiatry Res. 58:217–225

    Article  CAS  Google Scholar 

  51. Maes M., Lin A., Bonaccorso S., Goossens F., Gastel A., Pioli R., Delmerie L., Scharpé S. (1999). Higher serum prolyl endopeptidase activity in patients with post-traumatic stress disorder. J. Affect. Dis. 53:27–34

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thankfully acknowledge the computer resources, technical expertise and assistance provided by the Barcelona Supercomputing Center - Centro Nacional de Supercomputación. The authors also acknowledge R.␣A. Rodríguez-Mías for his nice contributions to this article.

This work was partially supported by grants from Fundación BBVA, Ministerio de Ciencia y Tecnología FEDER (BIO2002-2301 and EET2001-4813), the Air Force Office of Scientific Research, Air Force Materiel Command, USAF (F49620-03-1-0129), and by the Technology Research, Education, and Commercialization Center (TRECC), at University of Illinois at Urbana-Champaign, administered by the National Center for Supercomputing Applications (NCSA) and funded by the Office of Naval Research (N00014-01-1-0175).

The US Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation thereon.

The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the Air Force Office of Scientific Research, the Technology Research, Education, and Commercialization Center, the Office of Naval Research, or the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernest Giralt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belda, I., Madurga, S., Tarragó, T. et al. Evolutionary computation and multimodal search: A good combination to tackle molecular diversity in the field of peptide design. Mol Divers 11, 7–21 (2007). https://doi.org/10.1007/s11030-006-9053-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-006-9053-1

Keywords

Navigation