Skip to main content

Advertisement

Log in

ENPDA: an evolutionary structure-based de novo peptide design algorithm

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

One of the goals of computational chemists is to automate the de novo design of bioactive molecules. Despite significant advances in computational approaches to ligand design and binding energy evaluation, novel procedures for ligand design are required. Evolutionary computation provides a new approach to this design endeavor. We propose an evolutionary tool for de novo peptide design, based on the evaluation of energies for peptide binding to a user-defined protein surface patch. Special emphasis has been placed on the evaluation of the proposed peptides, leading to two different evaluation heuristics. The software developed was successfully tested on the design of ligands for the proteins prolyl oligopeptidase, p53, and DNA gyrase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Böhm H.J. (1998). Journal of Computer-Aided Molecular Design 12: 309–323

    Article  Google Scholar 

  2. Kubinyi H. (1999). Journal Receptor and Signal Transduction Research 19: 15–39

    Article  CAS  Google Scholar 

  3. Ajay A.,Walters W.P., Murko M.A. (1998). Journal of Medical Chemistry 41: 3314–3324

    Article  CAS  Google Scholar 

  4. Zou X., Sun Y., Kuntz I.D. (1999). Journal of American Chemistry Society 121: 8033-1-8043

    Article  CAS  Google Scholar 

  5. Apostolakis J., Caflish A. (1999). Combinatorial Chemistry and High Throughput Screening 2: 91–104

    CAS  Google Scholar 

  6. Codina A., Gairí M., Tarragó T., Vigueras A.R., Feliz M., Ludevid D., Giralt E. (2002). Jornal of Biomolecular NMR 22: 295–296

    Article  CAS  Google Scholar 

  7. Chiva C., Barthe P., Codina A., Gairí M., Molina F., Granier C., Pugniere M., Inui T., Nishi H., Nishiuchi Y., Kimura T., Sakakibara S., Albericio F., Giralt E. (2003). Journal of American Chemistry Society 125: 1508–1517

    Article  CAS  Google Scholar 

  8. Thormann M., Pons M. (2001). Journal of Computational Chemistry 22: 1971–1982

    Article  CAS  Google Scholar 

  9. Loffet A. (2002). Journal of Peptide Science 8: 1–7

    Article  CAS  Google Scholar 

  10. Malmsten M., Surfactants and Polymers in Drug Delivery, Marcel Dekker, 2002

  11. Henry, C.M. and Washinton, E., Chem. Eng. News., 79 (2001) 69–74.

    Google Scholar 

  12. Pinilla C., Appel J.R., Borras E., Houghten R.A. (2003). Nature Medicine 9: 118–122

    Article  CAS  Google Scholar 

  13. Jones S., Thornton J.M. (1997). Journal of Molecular Biology 272: 121–132

    Article  CAS  Google Scholar 

  14. Holland J.H., Adaptation in Natural and Artificial Systems, University of Michigan Press, 1975

  15. Krasnogor N. (2002). Studies on the Theory and Design Space of Memetic Algorithms. PhD dissertation at University of the West England, Bristol

  16. Baluja S., Caruana, R., Proceedings of the International Conference on Machine Learning, Morgan Kaufmann (1995) 112–128

  17. Pelikan, M., Goldberg, D.E. and Cantú-Paz, E., Proceedings of the Genetic and Evolutionary Computation Conference GECCO-99, Morgan Kaufmann (1999)

  18. Morris G., Goodsell D., Halliday R., Huey R., Belew R., Olson A. (1998). Journal of Computational Chemistry 19: 1639–1662

    Article  CAS  Google Scholar 

  19. Moon J.B., Howe J.W. (1991). Proteins: Structure, Function and Genetics 11: 314–328

    Article  CAS  Google Scholar 

  20. Gillet V.J., Newell W., Mata P., Myatt G., Sike S., Zsoldos Z., Johnson A.P. (1994). Journal of Chemical Information and Computer Sciences 34: 207–217

    CAS  Google Scholar 

  21. Douglet D., Thoreau E., Grassy G. (2000). Journal of computer-aided molecular design 14: 449–466

    Article  Google Scholar 

  22. Budin N., Majeux N., Tenette C., Caflisch A. (2001). Journal of Computational Chemistry 22: 1956–1970

    Article  CAS  Google Scholar 

  23. Frenkel D., Clark D.E., Li J., Murray C.W., Robson B., Waszkowycz B., Westhead D.R. (1995). Journal of Computer-Aided Molecular Design 9: 213–225

    Article  CAS  Google Scholar 

  24. Böhm H.J. (1996). Program biophysical molecular biology 3: 197–210

    Article  Google Scholar 

  25. Wang R., Gao Y., Lai L. (2000). Journal of molecular modeling 6: 498–516

    Article  CAS  Google Scholar 

  26. Mandell A., Selz K., Shlesinger M., Algorithmic design of peptides for binding and/or modulation of the funcions of receptors and/or other proteins, Patent No. 767460, 2002

  27. Teixido M., Belda I., Roselló X., Gonzalez S., Fabre M., Llorà X., Bacardit J., Garrell J.M., Vilaró S., Albericio F., Giralt E. (2002). QSAR and Combinatorial Sciences 22: 745–753

    Article  CAS  Google Scholar 

  28. Weber L., Wallbaum S., Broger C., Gubernator K. (1995). Angewantde Chemical International Edition English 34: 2280–2282

    Article  CAS  Google Scholar 

  29. Singh J., Ator M.A., Jaeger E.P., Allen M.P., Whipple D.A., Soloweij J.E., Chowdhary S., Treasurywala A.M. (1996). Journal of American Chemical Society 118: 1669–1676

    Article  CAS  Google Scholar 

  30. Schneider G., Schrodl W., Wallukat G., Muller J., Nissen E., Ronspeck W., Wrede P., Kunze R. (1998). Proceedings of Natural Academy of Sciences 95: 12179–12184

    Article  CAS  Google Scholar 

  31. Pegg S., Haresco J., Kuntz I. (2001). Journal of Computer-Aided Molecular Design 15: 911–933

    Article  CAS  Google Scholar 

  32. Haack T., González M.J., Sánchez Y., Giralt E. (1997). Letters in Peptide Science 4: 377–386

    CAS  Google Scholar 

  33. Fogel G.B., Corne D.W., Evolutionary Computation in Bioinformatics Elsevier Science, 2002

  34. Patel S., Stott I., Bhakoo M., Elliott P., Patenting Evolved Bactericidal Peptides, in Creative Evolutionary Systems, eds. Bentley, P. and Corne, D.W., Morgan Kaufmann Publishers, 2001

  35. Kamphausen S., Höltgen N., Wirsching F., Morys-Wortmann C., Riester D., Goetz R., Thürk M., Schwienhorst A. (2002). Journal of Computer-Aided Molecular Design 16: 551–567

    Article  CAS  Google Scholar 

  36. Michaud S.R., Zydallis J.B., Lamont G.B., Pachter R., Technical Proceedings of the 2001 International Conference on Computational Nanoscience and Nanotechnology (2001) 29–32

  37. Goh, G.K.-M. and Foster, J.A., Proceedings of the Genetic and Evolutionary Computation Conference GECCO-2000, Morgan Kaufmann (2000) 27–33

  38. Yamashita F., Wanchana S., Hashida M. (2002). Journal of Pharmaceutical Sciences 91: 2230–2238

    Article  CAS  Google Scholar 

  39. Shoichet B.K., McGovern S.L., Wei B., Irwin JJ. (2002). Current Opinion in Chemical Biology 6: 439–446

    Article  CAS  Google Scholar 

  40. Scheider G., Lee M., Stahl M., Schneider P. (2000). Journal of Computer-Aided Molecular Design 14: 487–494

    Article  Google Scholar 

  41. Koza J.R., Genetic Programming: On the Programming of Computers by Means of Natural Selection, MIT Press (1992)

  42. Baker J.E., Proceedings of the First International Conference on Genetic Algorithms, Erlbaum (1985) 101–111

  43. Baker, J.E., Proceedings of the Second International Conference on Genetic Algorithms, Erlbaum (1987) 14–21

  44. Michalewicz, Z., Genetic Algorithms + Data Structures = Evolution Programs, Springer, 1992

  45. Back T., Evolutionary Algorithms in Theory and Practice, Oxford University Press, 1997

  46. Schwefel, H.P., Numerische Optimierung von Computer-Modellen mittels der Evolutionsstrategie, Birkhaeuser, 1977

  47. Howard, R. and Matheson, J., Readings on the Principles and Applications of Decision Analysis, volume III, eds. Howard, R. and Matheson, J., Strategic Decisions Group (1981) 721–762

  48. Pearl, J., Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference, Morgan Kaufmann, 1988

  49. Heckerman, D., Geiger, D. and Chickering, D.M, Technical report of Microsoft Research, MSR-TR-94-09, 1995

  50. Pelikan, M., Goldberg, D.E and Cantú-Paz, E., Technical report of IlliGAL, No. 98013, 1998

  51. Vajda S., Camacho C.J. (2004) Trends in Biotechnology 22: 110–116

    Google Scholar 

  52. Macke T.J., Case D.A. (). NAB User’s Manual, Departament of Molecular Biology, The Scripps Research Institute, La Jolla, California, 1999

  53. Chou P.Y., Fasman, G.D. (1978). Advanced in Enzymology 47: 45–148

    CAS  Google Scholar 

  54. Berman H.M, Westbrook J., Feng Z., Gilliland G., Bhat T.N, Weissig H., Shindyalov I.N., Bourne P.E. (2000). Nucleic Acids Research 28: 235–242

    Article  CAS  Google Scholar 

  55. Yoshimoto T., Fischl M., Orlowski R., Walter R. (1978). Journal of Biological Chemistry 10: 3708–3716

    Google Scholar 

  56. Fülöp V., Bocskei Z., Polgár L. (1998). Cell 94: 161–170

    Article  Google Scholar 

  57. Goossens F., De Meester I., Vanhoof G., Scharpé S. (1996). European Journal Clinical Chemistry and Clinical Biochemistry 34: 17–22

    CAS  Google Scholar 

  58. Mentlein R. (1988). FEBS Letters 234: 251–256

    Article  CAS  Google Scholar 

  59. Maes M., Goossens F., Scharpé S., Calabrese J., Desnyder R., Meltzer H.Y. (1995). Psychiatry Research 58: 217–225

    Article  CAS  Google Scholar 

  60. Maes M., Lin A.H., Bonaccorso S., Goossens F., Gastel A.V., Pioli R., Delmerie L., Scharpé S. (1999). Journal of Affective Disorders 53: 27–34

    Article  CAS  Google Scholar 

  61. Vogelstein B., Lane D., Levine A.J. (2000). Nature 408: 307–310

    Article  CAS  Google Scholar 

  62. Chene P. (2001). Oncogene 20: 2611–2617

    Article  CAS  Google Scholar 

  63. Clore M., Ernst J., Clubb R., Omichinski J.G., Kennedy W.M.P., Sakaguchi K., Appella E., Gronenborn A.M. (1995). Nature Structural Biology 2: 321–333

    Article  CAS  Google Scholar 

  64. Salvatella X., Martinell M., Gairí M., Mateu M.G., Feliz M., Hamilton A.D., de Mendoza J., Giralt E. (2004). Angewantde Chemie International Edition 43: 196–198

    Article  CAS  Google Scholar 

  65. Martinell M., Disseny síntesi i estudi de lligands peptídics capaços de reconèixer la superfície de la p53, PhD dissertation at Universitat de Barcelona, 2004

  66. Gellert M. (1981). Annual Review of Biochemistry 50: 879–910

    Article  CAS  Google Scholar 

  67. Vizan J.L., Hernandez-Chico C., del Castillo I., Moreno F. (1991). EMBO Journal 10: 467–476

    CAS  Google Scholar 

  68. Yorgey P., Davagnino J., Kolter R. (1993). Molecular Microbiology 9: 897–905

    Article  CAS  Google Scholar 

  69. Luz J.G., Huang M., Garcia K.C., Rudolph M.G., Apostolopoulos V., Teyton L., Wilson I.A. (2002). The Journal of Experimental Medicine 195: 1175–1186

    Article  CAS  Google Scholar 

  70. Falk K., Rotzschke O., Stevanovic S., Jung G., Rammensee H.G. (2001). Nature 351: 290–296

    Article  Google Scholar 

  71. Pelikan M., Goldberg D.E., Cantú-Paz E., Technical report of IlliGAL, No. 2000001, 2000

Download references

Acknowledgments

The authors thank I. Traus for his creative input on the computational aspects of this work, and Prof. X. Vilasis for his mathematical support in the implementation of Bayesian network learning algorithms. The authors would also like to thank the Parc Científic de Barcelona for providing the␣computational resources used for this research.

This work was partially supported by grants from Fundación BBVA, Fundació Marató TV3 and the Ministerio de Ciencia y Tecnología FEDER (BIO2002-2301 and EET2001-4813), the Air Force Office of Scientific Research, Air Force Materiel Command, USAF (F49620-03-1-0129), and by the Technology Research, Education, and Commercialization Center (TRECC), at the University of Illinois at Urbana–Champaign, administered by the National Center for Supercomputing Applications (NCSA) and funded by the Office of Naval Research (N00014-01-1-0175). The US Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation thereon.

The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the Air Force Office of Scientific Research, the Technology Research, Education, and Commercialization Center, the Office of Naval Research, or the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernest Giralt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belda, I., Madurga, S., Llorà, X. et al. ENPDA: an evolutionary structure-based de novo peptide design algorithm. J Comput Aided Mol Des 19, 585–601 (2005). https://doi.org/10.1007/s10822-005-9015-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-005-9015-1

Keywords

Navigation