Skip to main content
Log in

Mechanical Properties of Alfa, Sisal, and Hybrid Alfa/Sisal Fiber Satin Cloth Reinforced Epoxy

  • Published:
Mechanics of Composite Materials Aims and scope

The mechanical behavior of composites, made of an epoxy resin matrix reinforced by 30 and 40% of a satin cloth from long Alfa, sisal and hybrid Alfa/sisal fibers was studied. The fibers are obtained by extraction with elimination of binders such as pectins and lignin. For each type of fibers, appropriate and optimal chemical and thermal treatments were conducted within NaOH solution, to enhance both the fiber surface quality and the interfacial bonding between fibers and matrix. Fourier transform infrared (FTIR), scanning electron microscopy (SEM), and chemical decomposition of treated and untreated fibers lead to prove the treatment efficiency. The thermogravimetric (TGA) and differential thermogravimetric (DTG) analyses showed better thermal stability. Differential scanning calorimetry (DSC) made it possible to quantify the enthalpy changes which showed an increase in the amount of heat as a function of the increase in weight fraction of natural fibers. The endothermic reaction of the composites studied containing 30 wt% fiber reinforcement was less than that containing 40 wt% fiber reinforcement. The composite materials were produced by vacuum assisted resin transfer molding (VARTM) method due to hydrophilic nature of the fibers. The results of static tests were compared to those of pure epoxy resin. It showed a significant increase for 40 wt% woven A1lfa/epoxy of about 333, 113, and 81% in tension, 3-points bending and compression tests respectively. SEM morphology analysis revealed good interfacial adhesion between the treated fibers and the matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig.8
Fig. 9
Fig.10
Fig. 11

Similar content being viewed by others

References

  1. P. Antich, A.Vázquez, I. Mondragon, and C. Bernal, “Mechanical behavior of high impact polystyrene reinforced with short sisal fibers,” Compos., Part Appl., 37, No. 1, 139-150 (2006).

  2. J. Kuruvilla, T. Sabu, and C. Pavithran, “Effect of chemical treatment on the tensile properties of short sisal fiberreinforced polyethylene composites,” Polymer., 37, No. 23, 5139-5149 (1996).

    Article  Google Scholar 

  3. R. Belhassen, S. Boufi, F. Vilaseca, J. P. Lopez, A. Méndez, E. Franco, M. A. Pèlach, and P. Mutjé, “Biocomposites based on Alfa fibers and starch-based biopolymer,” Polym. Adv. Tech., 20, No. 12, 1068‑1075 (2008).

    Article  Google Scholar 

  4. S. Helaili, M. Chafra, and Y. Chevalier, “Natural fiber alfa/epoxy randomly reinforced composite mechanical properties identification,” Struct., 34, 542-549 (2021).

    Article  Google Scholar 

  5. S. Kumar and S. Balachander, “Studying the effect of reinforcement parameters on the mechanical properties of natural fibre-woven composites by Taguchi method,” J. Industrial Textiles, 50, No. 2, 133-148 (2020).

    Article  CAS  Google Scholar 

  6. T. Murugan and B. S. Kumar, “Studies on mechanical and dynamic mechanical properties of banana fibre nonwoven composite,” Mater. Today: Proceedings, 39, 1254-1258 (2021).

    CAS  Google Scholar 

  7. S. K. Boominathan, V. Amutha, P. Senthamaraikannan, D. V. K. Raj, S. K. Selvaraj, and S. Sakthivel, “Investigation of mechanical, thermal, and moisture diffusion behavior of Acacia Concinna FIBER/POLYESTER matrix composite,” J. Natural Fibers, 19(16), 13495-13510 (2022).

    Article  CAS  Google Scholar 

  8. L. Yan, N. Chouw, and K. Jayaraman, “Flax fibre and its composites — A review,” Compos., Part B, 56, 296‑317 (2014).

    Article  CAS  Google Scholar 

  9. K. E. Borchani, C. Carrot, and M. Jaziri, ‘‘Biocomposites of Alfa fibers dispersed in the Mater-BiÒtype bioplastic: Morphology, mechanical and thermal properties,” Compos., Part A, 78, 371-379 (2015).

    Article  Google Scholar 

  10. H. Mechakra, A. Nour, S. Lecheb, and A. Chellil, “Mechanical characterizations of composite material with short Alfa fibers reinforcement,” Compos. Struct., 124, 152-162 (2015).

    Article  Google Scholar 

  11. A. Nour , H. Mechakra , B. Benkoussas, I. Tawfiq, A.T. Settet, and R. Renane, “Modeling a composite reinforced with short Alfa fibers to determine its fatigue and structural homogenization,” Mech. Comp. Mater., 54, 487-498 (2018).

    Article  CAS  Google Scholar 

  12. K. Labidi, O. Korhonen, M. Zrida, A. H. Hamzaoui, and T. Budtova, “All-cellulose composites from Alfa and wood fibers,” Ind. Crops Prod., 127, 135‑141 (2019).

    Article  CAS  Google Scholar 

  13. A. A. Abdul Nasir, A. I. Azmi, and A. N. M. Khalil, “Measurement and optimisation of residual tensile strength and delamination damage of drilled flax fibre reinforced composites,” Measur., 75, 298‑307 (2015).

  14. I. S. Phani Sushma, B. Vasundhar, and N. V. Jagadeesh Varma, “Fabrication and experimental evaluation of properties with reinforcement of polyester resin with sisal fibre,” Mater. Today: Proceedings 5(13), 27081-27087 (2018).

  15. N. Benouadah, D. Aliouche, A. Pranovich, and S. Willför, “Chemical characterization of Pinus halepensis sapwood and heartwood,” Wood Mater. Sc. Eng., 14, No. 3, 157-164 (2019).

    Article  CAS  Google Scholar 

  16. A. G. Tesfay, M. B. Kahsay, and P. S. Senthil Kumar, “Effects of chemical treatment, hybridization, and hybrid fiber stacking sequence and orientation on tensile and impact strength of continuous sisal fiber reinforced polyester composites,” J. Natural Fibers,19, No. 7, 2619-2631 (2022).

  17. D. Trache, A. Donnot, K. Khimeche, R. Benelmir, and N. Brosse, “Physico-chemical properties and thermal stability of microcrystalline cellulose isolated from Alfa fibres,” Carbohydr. Polym., 104, 223-230 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. W. Bessaa, D. Trache, M. Derradji, B. Bentoumia, and A. F. Tarchoun, “Effects of chemical treatment, hybridization, and hybrid fiber stacking sequence and orientation on tensile and impact strength of continuous sisal fiber reinforced polyester composites,” Int. J. Bio. Macro., 180, 194-202 (2021).

    Google Scholar 

  19. V. P. Arthanarieswaran, A. Kumaravel, and M. Kathirselvam, “Evaluation of mechanical properties of banana and sisal fiber reinforced epoxy composites: Influence of glass fiber hybridization,” Mater. Design, 64, 194 (2014).

    Article  CAS  Google Scholar 

  20. A. Khaldi, A. Vivet, A. Bourmaud, Z. Sereir, and B. Kada, “Damage analysis of composites reinforced with Alfa fibers: Viscoelastic behavior and debonding at the fiber/matrix interface,” J. Appl. Polymer Sci., 133, 31 (2016).

    Article  Google Scholar 

  21. A. Bessadok, S. Roudesli, S. Marais, N. Follain, and L. Lebrun, “Alfa fibres for unsaturated polyester composites reinforcement: Effects of chemical treatments on mechanical and permeation properties,” Compos., Part A, 40, 184-195 (2009).

    Article  Google Scholar 

  22. M. Rokbi, H. Osmani, A. Imad, and N. Benseddiq, “Effect of Chemical treatment on Flexure Properties of Natural Fiber-reinforced Polyester Composite,” Procedia Eng., 10, 2092-2097 (2011).

    Article  CAS  Google Scholar 

  23. M. Touil, A. Lachheb, R. Saadani, M. R. Kabiri, and M. Rahmoune, “A new experimental strategy assessing the optimal thermo-mechanical properties of plaster composites containing Alfa fibers,” Energy & Buildings, 262, 111984 (2022).

    Article  Google Scholar 

  24. Y. Cao, S. Shibata, and I. Fukumoto, “Mechanical properties of biodegradable composites reinforced with bagasse fibre before and after alkali treatments,” Compos., Part A, 37, 423-429 (2006).

    Article  Google Scholar 

  25. F. Z. Arrakhiz, K. Ben Hamou, F. Erchiqui, D. Hammiche, and H. Kaddami, “Development and characterization of hybrid composite laminate based on luffa and glass fibers,” Mater. Today: Proceedings 36, 22-28 (2021).

  26. L. Joseph, E. K. Chakravarthi, S. P. Kumar., K. Jayanarayanan, and K. M. Mini, “Nano filler incorporated epoxy based natural hybrid fiber confinement of concrete systems: Effect of fiber layers and nano filler addition,” Struct., 51, 320-331 (2023).

  27. N. Zhang, B. Wang, D. Yue b, D. Pan, H. Wang, J. Li, and Y. Zhang, “Waste liquid-added regeneration activator to enhance the pore structure and compressive strength of geopolymer-foam-fiber: A sustainable strategy of kenaf fiber pretreatment and reuse,” Process Safety and Environmental Protection, 170, 536-544 (2023).

  28. S. Gwon, S. H. Han, T. D. Vu, C. Kim, and M. Shin, “Rheological and mechanical properties of kenaf and jute fiberreinforced cement composites,” Int. J. Concr. Struct. Mater., 17, 5 (2023).

    Article  CAS  Google Scholar 

  29. S. Ben Brahim and R. Ben Cheikh, “Influence of fibre orientation and volume fraction on the tensile properties of unidirectional Alfa-polyester composite,” Comp. Sc. and Tech., 67, No. 1, 157-164 (2007).

  30. C. Mokhtari, T. Harit, R. Khiari, and F. Malek, “Biobased composites from jojoba oil and fibers from alfa stems: elaboration and characterization, industrial crops and products,” Industrial Crops and Products, 176, 114294 (2022).

    Article  CAS  Google Scholar 

  31. S. R. Laraba, A. Rezzoug, R. Halimi, L. Wei, Y. Yang,S. Abdi, Y. Li, and W. Jie, “Development of sandwich using low-cost natural fibers: Alfa-Epoxy composite core and jute/metallic mesh-Epoxy hybrid skin composite,” Ind. Crops and Pro., 184, 115093 (2022).

    Article  CAS  Google Scholar 

  32. F. E. El-Abbassi, M. Assarar, R. Ayad, A. Bourmaud, and C. Baley, “A review on alfa fibre (Stipa tenacissima L.): From the plant architecture to the reinforcement of polymer composites,” Compos., Part A, 128, 105677 (2020).

Download references

Acknowledgments

The authors would like to acknowledge experimental support of Materials, Processes and Environment Research Unit of M’Hamed Bougara University. A special thanks go to Pr. M. Hachemi, S. Aït Hacene, and Z. Oukali for their help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Nour.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baali, B.R., Gherbi, M.T., Nour, A. et al. Mechanical Properties of Alfa, Sisal, and Hybrid Alfa/Sisal Fiber Satin Cloth Reinforced Epoxy. Mech Compos Mater 60, 145–162 (2024). https://doi.org/10.1007/s11029-024-10180-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-024-10180-8

Keywords

Navigation