Skip to main content
Log in

Interlaminar Shear Strength Behavior of Carbon Fiber Reinforced Aluminum Alloy Laminate

  • Published:
Mechanics of Composite Materials Aims and scope

The interlayer bonding ability is a crucial indicator of thermoplastic fiber metal laminates (FMLs). Using different preparation strategies and adhesive thicknesses, a series of fiber metal laminates were prepared from 2024-T3 Al alloy, unidirectional carbon fiber prepreg tapes, and films of polyether ether ketone. The span-thickness ratio for this type of laminates was examined and characterized to identify the most suitable span-thickness ratio. The effects of adhesive layer thickness on the interlaminar properties of FMLs were investigated, and the failure processes were analyzed by microscopic observation. The results show that lower span-thickness ratios have better applicability in thermoplastic carbon fiber aluminum alloy laminates. The adhesive layer presence significantly affects interlaminar properties independent of its thickness, and the FMLs with unidirectional alignment and anodized treatment possess stronger shear resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. M. A. Karatas and H. Gokkaya, “A review on machinability of carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP) composite materials,” Defence Technology, 14, No. 4, 318-326 (2018).

    Article  Google Scholar 

  2. K. Kavitha, R. Vijayan, and T. Sathishkumar, “Fibre-metal laminates: A review of reinforcement and formability characteristics,” Materials Today: Proceedings, 22, 601-605 (2020).

    Google Scholar 

  3. T. Sinmazcelik, E. Avcu, M. O. Bora, and O. Coban, “A review: Fibre metal laminates, background, bonding types and applied test methods,” Materials & Design, 32, No. 7, 3671-3685 (2011).

    Article  CAS  Google Scholar 

  4. A. N. Ashong, M. Lee, S.-T. Hong, Y. S. Lee, and J. H. Kim, “Refill friction stir spot welding of dissimilar AA6014 Al alloy and carbon-fiber-reinforced polymer composite,” Metals and Mater. Int., 27, No. 4, 639-649 (2021).

    Article  CAS  Google Scholar 

  5. A. Marx, A. Schmid, T. Haubold, L. Pursche, P. Schiebel, and A. Herrmann, “Influence of the aluminum die casting process on PEEK layered CFRP in the manufacturing of a hybrid connection,” IOP Conf. series. Mater. Sci. and Eng., 1147, No. 1, 12018 (2021).

  6. T. Trzepiecinski, S. M. Najm, M. Sbayti, H. Belhadjsalah, M. Szpunar, and H. G. Lemu, “New advances and future possibilities in forming technology of hybrid metal-polymer composites used in aerospace applications,” J. Compos. Sci., 5, No. 8 (2021).

  7. Y. Lu, Y. Li, Y. Zhang, and L. Dong, “Manufacture of Al/CF/PEEK curved beams by hot stamping forming process,” Mater. and Manufac. Processes, 37, No. 14, 1597-1609 (2022).

    Article  CAS  Google Scholar 

  8. J.-H. Sim, Y. Ha, M.-K. Kim, M.-J. Kim, and Y.-R. Cho, “Investigation on delamination characteristics of 2-ply clad metals and adhesive joints for aluminum/stainless steel via the peel test,” Metals and Mater. Int., 28, No. 2, 361-369 (2022).

    Article  CAS  Google Scholar 

  9. Ostapiuk, M., M. V. Loureiro, J. Bienias and A. C. Marques, “Interlaminar shear strength study of Mg and carbon fiber-based hybrid laminates with self-healing microcapsules,” Composite Structures 255 (2021).

  10. C. Zopp, A. Dittes, D. Nestler, I. Scharf, L. Kroll, and T. Lampke “Quasi-static and fatigue bending behavior of a continuous fiber-reinforced thermoplastic/metal laminate,” Compos., Part B, 174 (2019).

  11. K. Jin, S. Xuan, J. Tao, and Y. Chen, “The Synergistic effect of temperature and loading rate on deformation for thermoplastic fiber metal laminates,” Materials, 14, No. 15, 4210 (2021).

    Google Scholar 

  12. C. Bellini, V. Di Cocco, F. Iacoviello, and L. Sorrentino, “Performance evaluation of CFRP/Al fibre metal laminates with different structural characteristics,” Compos. Struct., 225 (2019).

  13. T. Trzepiecinski, A. Kubit, R. Kudelski, P. Kwolek, and A. Obtloj, “Strength properties of aluminium/glass-fiberreinforced laminate with additional epoxy adhesive film interlayer,” Int. J. Adhes. and Adhes., 85, 29-36 (2018).

    Article  CAS  Google Scholar 

  14. H. Li, Y. Hu, X. Fu, X. Zheng, H. Liu, and J. Tao, “Effect of adhesive quantity on failure behavior and mechanical properties of fiber metal laminates based on the aluminum-lithium alloy,” Compos. Struct., 152, 687-692 (2016).

    Article  Google Scholar 

  15. S. Yang, W. Xu, L. Liang, T. Wang, and Y. Wei, “An experimental study on the dependence of the strength of adhesively bonded joints with thickness and mechanical properties of the adhesives,” J. Adhes. Sci. and Technol., 28, No. 11, 1055-1071 (2014).

    Article  CAS  Google Scholar 

  16. Q. Luo and L. Tong, “Analytical solutions for nonlinear analysis of composite single-lap adhesive joints,” Int. J. Adhes. and Adhes., 29, No. 2, 144-154 (2009).

    Article  CAS  Google Scholar 

  17. Y. Lin, C. Liu, H. Li, K. Jin, and J. Tao, “Interlaminar failure behavior of GLARE laminates under double beam fivepoint-bending load,” Compos. Struct., 201, 79-85 (2018).

    Article  Google Scholar 

  18. D. H. Pahr, F. G. Rammerstorfer, P. Rosenkranz, K. Humer, and H. W. Weber, “A study of short-beam-shear and doublelap-shear specimens of glass fabric/epoxy composites,” Compos., Part B, 33, No. 2, 125-132 (2002).

    Article  Google Scholar 

  19. M. Gao, P. Gao, Y. Wang, T. Lei, and C. Ouyang, “Study on metallurgically prepared copper-coated carbon fibers reinforced aluminum matrix composites,” Metals and Mater. Int., 27, No. 12, 5425-5435 (2021).

    Article  CAS  Google Scholar 

  20. H. G. Kotik and J. E. Perez Ipina, “Short-beam shear fatigue behavior of fiber metal laminate (Glare),” Int. J. Fatigue, 95, 236-242 (2017).

  21. F. Bahari-Sambran, J. Meuchelboeck, E. Kazemi-Khasragh, R. Eslami-Farsani, and S. A. Chirani, “The effect of surface modified nanoclay on the interfacial and mechanical properties of basalt fiber metal laminates,” Thin-Walled Struct., 144 (2019).

  22. Y. Chen, K. Jin, H. Li, Y. Lin, Y. Lu, X. Hua, Q. Yuan, H. Wang, and J. Tao, “Effect of peer ply and cooling rate on the tensile properties of Al/Gf/PP laminate prepared by hot pressing,” J. Sandwich Struct. & Mater., 22, No 8, 2567-2581 (2020).

    Article  CAS  Google Scholar 

  23. R. K. Gupta, A. Mahato, and A. Bhattacharya, “Damage analysis of carbon fiber reinforced aluminum laminate under short beam and single edge notch beam bend test,” Int. J. Mech. Sci., 198, 106393 (2021).

    Article  Google Scholar 

  24. C. Liu, D. Du, H. Li, Y. Hu, Y. Xu, J. Tian, G. Tao, and J. Tao, “Interlaminar failure behavior of GLARE laminates under short-beam three-point-bending load,” Compos., Part B, 97, 361-367 (2016).

    Article  CAS  Google Scholar 

  25. A. C. M. Q. S. Santos, F. M. Monticeli, H. Ornaghi, Jr., L. F. d. P. Santos, and M. O. H. Cioffi, “Porosity characterization and respective influence on short-beam strength of advanced composite processed by resin transfer molding and compression molding,” Polymers & Polymer Compos., 29, No. 8, 1353-1362 (2021).

  26. K. Geng, W. Yang, J. Mo, H. Liu, F. Wei, Z. Ma, Y. Zhao, and A. Inoue, “Plastic Deformation Mechanism of Ductile Fe50Ni30P13C7 Metallic Glass,” Metals and Mater. Int., 25, No. 2, 487-498 (2019).

    Article  CAS  Google Scholar 

  27. Y. Hu, Y. Zhang, X. Fu, G. Hao, and W. Jiang, “Mechanical properties of Ti/CF/PMR polyimide fiber metal laminates with various layup configurations,” Compos. Struct., 229 (2019).

  28. H. Cui, S. Koussios, Y. Li, and A. Beukers, “Measurement of adhesive shear properties by short beam shear test based on higher order beam theory,” Int. J. Adhes. and Adhes. 40, 19-30 (2013).

    Article  CAS  Google Scholar 

  29. J. Zhang, V. S. Chevali, H. Wang, and C.-H. Wang, “Current status of carbon fibre and carbon fibre composites recycling,” Compos., Part B, 193 (2020).

Download references

Acknowledgments

This research was supported by National Natural Science Foundation of China (U21A20132), Guangxi Specially-invited Experts Foundation of Guangxi Zhuang Autonomous Region, China (GuiRenzi2019 (13)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yibo Li.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, Z., Li, Y., Huang, M. et al. Interlaminar Shear Strength Behavior of Carbon Fiber Reinforced Aluminum Alloy Laminate. Mech Compos Mater 59, 901–912 (2023). https://doi.org/10.1007/s11029-023-10141-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-023-10141-7

Keywords

Navigation