Skip to main content
Log in

Ano-Scale Mechanical, Viscoelastic, and Tribological Behaviors of Polyaryletherketone Modified Bismaleimide Blends

  • Published:
Mechanics of Composite Materials Aims and scope

A high-performance bismaleimide (BMI) resin blends containing the polyaryletherketone (PAEK) were prepared. The nanomechanical behaviors, viscoelasticity, and tribological properties of the bismaleimide resins were investigated by nanoindentation/scratch methods. It was established that the hardness ( H ) decreased, while the elastic modulus ( E ) increased, i.e., a reduction of plasticity index ( H /E ) values through the quasi-static nano-indentation testing. Meanwhile, the indentation response was mainly affected by the plastic deformation in response to a stress. The unmodified bismaleimide resins demonstrated better load-bearing capacity and indentation recovery ability, lower penetration depth than the other three specimens. Effects of angular frequency and average contact force on the viscoelastic properties were also investigated by the dynamic nanoindentation mode. The results revealed that variations of the loss tangent curves nearly were similar to each other, first increased then decreased gradually at contact force of 150 and 300 μN. Topography and profiles of the indentation and scratch surfaces were also discussed. Based on the results of the nanoscratching tests, when the PAEK content was 10 phr, the coefficient of friction during plowing was the lowest, exhibited the better scratch/wear resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. J. O. Park and T. S. Tang, “Synthesis and characterization of bismaleimides from epoxy resins,” J. Polym. Sci. Part A Polym. Chem., 30, No. 5, 723-729 (1992).

    Article  CAS  Google Scholar 

  2. C. M. Chan, Polymer Surface Modification and Characterization, Hanser Publications, New York, Chapter 1, 1-34 (1994).

    Google Scholar 

  3. X. L. Cheng, Q. Wu, S.E. Morgan, and J. S. Wiggins, “Morphologies and mechanical properties of polyethersulfone modified epoxy blends through multifunctional epoxy composition,” J. Appl. Polym. Sci., 134, No. 18, 44775 (2017).

  4. H. X. Hu, Z. W. Liu, C. J. Wang, L. M. Meng, and Y. Z. Shen, “Nanomechanical Properties of a Bicomponent Epoxy Resin via Blending with Polyaryletherketone,”, J. Compos. Sci., 3, No. 4, 92-102 (2019).

    Article  CAS  Google Scholar 

  5. M. Wong, G. T. Lim, A. Moyse, J. N. Reddy, and H. J. Sue, “A new test methodology for evaluating scratch resistance of polymers,” Wear, 256, 1214-1227 (2004).

    Article  CAS  Google Scholar 

  6. B. D. Beake, A. J. Harrisand, and T. W. Liskiewicz, “Review of recent progress in nanoscratch testing,” Tribol. Mater. Surf. Interfaces, 7, No. 2, 87-96 (2013).

    Article  CAS  Google Scholar 

  7. B. D. Beakeand and G. J. Leggett, “Nanoindentation and nanoscratch testing of uniaxially and biaxially drawn poly (ethylene terephthalate) film,” Polymer, 43, No. 2, 319-327 (2002).

    Article  Google Scholar 

  8. A. Kareer, E. Tarleton, C. Hardie, S. V. Hainsworthand, and A. J. Wilkinson, “Scratching the surface: Elastic rotations beneath nanoscratch and nanoindentation tests,” Acta Mater. 200, 116-126 (2020).

    Article  CAS  Google Scholar 

  9. K. Q. Liu, Z. J. Jin, L. B. Zeng, M. Ostadhassan, and X. M. Xu, “Understanding the creep behavior of shale via nano- DMA method,” Energy Reports, 7, 7478-7487 (2021).

    Article  Google Scholar 

  10. A. Krupicka, M. Johansson, and A. Hult, “Viscoelasticity in polymer film on rigid substrates,” Macromol. Mater. Eng., 288, No. 2, 108-116 (2003).

    Article  CAS  Google Scholar 

  11. Y. F. Zhang, S. L. Bai, D. Y. Yang, Z. Zhang, and K. W. Sharpon, “Study on the viscoelastic properties of the epoxy surface by means of nanodynamic mechanical analysis,” J. Polym. Sci.: Part B: Polym. Phys., 46, No. 3, 281-288 (2008).

  12. M. George and A. Mohanty, “Viscoelastic and mechanical characterization of graphene decorated with graphene quantum dots reinforced epoxy composites,” Polym. Eng. Sci., 60, No. 12, 3011-3023 (2020).

    Article  CAS  Google Scholar 

  13. C. C. White, M. R. Vanlandingham, P. L. Drzal, N. K. Chang, and S. H. Chang, “Viscoelastic characterization of polymers using instrumented indentation. II. Dynamic testing,” J. Polym. Sci. Part B: Polym. Phys., 43, No. 14, 1812-1824 (2005).

  14. G. M. Odegard, T. S. Gates, and H. M. Herring, “Characterization of viscoelastic properties of polymeric materials through nanoindentation,” Exp. Mech., 45, No. 2, 130-136 (2005).

    Article  Google Scholar 

  15. R. J. Iredale, C. Ward, and I. Hamerton, “Modern advances in bismaleimide resin technology: a 21st century perspective on the chemistry of addition polyimides,” Prog. Polym. Sci., 69, 1-21 (2017).

    Article  CAS  Google Scholar 

  16. Z. Y. Yerlikaya, Z. Öktem, and E. Bayramli, “Chain-Extended bismaleimides. I. Preparation and characterization of maleimide-terminated resins,” J. Appl. Polym. Sci. 59, No. 1, 165-171 (1996).

    Article  CAS  Google Scholar 

  17. Z. L. Zhang, X. H. Li, Y. Bao, W. Wei, X. J. Li, and X. Y. Liu, “Bismaleimide resins modified by an allyl ether of bio-based resveratrol with excellent halogen-free and phosphorus-free intrinsic flame retardancy and ultrahigh glass transition temperature,” Polym. Degrad. Stab., 193, 109717 (2021).

    Article  CAS  Google Scholar 

  18. T. Takeichi, Y. Saito, T. Agag, H. Mutoand, and T. Kawauchi,“High-performance polymer alloys of polybenzoxazine and bismaleimide,” Polymer, 49, No. 5, 1173-1179(2008).

    Article  CAS  Google Scholar 

  19. Z Wang, W. Wu, M. H. Wagner, L. Zhang, and S. Bard, “Synthesis of DV-GO and its effect on the fire safety and thermal stability of bismaleimide,” Polym. Degrad. Stabil., 128, 209-216 (2016).

    Article  CAS  Google Scholar 

  20. L. Qiu, P. Guo, X. Q. Yang, Y. X. Ouyang, Y. H. Feng, X. X. Zhang, J. N. Zhao, X. H. Zhang, and Q. W. Li,“Electro curing of oriented bismaleimide between aligned carbon nanotubes for high mechanical and thermal performances,” Carbon, 145, 650-657 (2019).

    Article  CAS  Google Scholar 

  21. A. Wagner, I. Gouzman, N. Atar, E. Grossman, M. Pokrass, A. Fuchsbauer, L. Schranzhofer. and C. Paulik, “Cure kinetics of bismaleimides as basis for polyimide like inks for PolyJet (TM)-3D-printing,” J. Appli. Polym. Sci., 136, No. 12, 47244 (2019).

  22. C. P. Reghunadhan and Nair, “Advances in addition-cure phenolic resins,” Prog. Polym. Sci., 29, 401-498 (2004).

  23. S. Kamiyama, Y. Hirano, T. Okada, and T. Ogasawara, “Lightning strike damage behavior of carbon fiber reinforced epoxy, bismaleimide, and polyetheretherketone composites,” Compos. Sci. Technol., 161, 107-114 (2018).

    Article  CAS  Google Scholar 

  24. C. Liu, Y. Qiao, N. Li, F. Y. Hu, Y. S. Chen, G. Z. Du, J. Y. Wang, and X. G. Jian, “Toughened of bismaleimide resin with improved thermal properties using amino-terminated Poly(phthalazinone ether nitrile sulfone)s,” Polymer, 206, 122887 (2020).

    Article  CAS  Google Scholar 

  25. Q. Zou, F. Xiao, S. Q. Gu, J. Li, D. J. Zhang, Y. F. Liu, and X. B. Chen,“Toughening of bismaleimide resin based on the self-assembly of flexible aliphatic side chains,” Ind. Eng. Chem. Res., 58, No. 36, 16526-16531 (2019).

    Article  CAS  Google Scholar 

  26. Q. Yuan, F. Huang, and Y. Jiao, “Characterization of modified bismaleimide resin,” J. Appl. Polym. Sci., 62, No. 3, 459-464 (1996).

    Article  CAS  Google Scholar 

  27. F. W. Huang, F. R. Huang, Y. Zhou, and L. Du, “Preparation and properties of bismaleimide resins modified with hydrogen silsesquioxane and dipropargyl ether and their composites,” Polym. J., 42, No. 3, 261-267 (2010).

    Article  CAS  Google Scholar 

  28. W. C. Oliver and G. M. Pharr, “An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments,” J. Mater. Res., 7, No. 6, 1564-1583 (1992).

    Article  CAS  Google Scholar 

  29. M. M. Shokrieh, M. R. Hosseinkhani, M. R. Naimi-Jamal, and H. Tourani, “Nanoindentation and nanoscratch investigations on Graphene based nanocomposites,” Polym. Test., 32, No. 1, 45-51 (2013).

    Article  CAS  Google Scholar 

  30. J. L. Koenig, Ch.4, Applications of IR Spectroscopy to Ppolymers, Spectroscopy of Polymers (Second Edition), 147-206 (1999).

  31. Z. Chen, H. Yan, Q. Lyu, S. Niu, and C. Tang, “Ternary hybrid nanoparticles of reduced graphene oxide/graphene-like MoS2/zirconia as lubricant additives for bismaleimide composites with improved mechanical and tribological properties,” Compos., Part A, 101, 98-107 (2017).

    Article  CAS  Google Scholar 

  32. F. Wang, L. T. Drzal, Y. Qinand, and Z. Huang, “Enhancement of fracture toughness, mechanical and thermal properties of rubber/epoxy composites by incorporation of graphene nanoplatelets,” Compos., Part A, 87, 10-22 (2016).

    Article  CAS  Google Scholar 

  33. S. Rakesh, C. P. S. Dharan, M. Selladurai, V. Sudha, P. R. Sundararajan, and M. Sarojadevi, “Thermal and mechanical properties of POSS-Cyanate ester/epoxy nanocomposites,” High Peform. Polym., 25, No. 1, 87-96 (2013).

    Article  Google Scholar 

  34. Z. H. Xu and J. Agren, “An analysis of piling-up or sinking-in behaviour of elastic–plastic materials under a sharp indentation,” Phil. Mag. Lett., 84, No. 23, 2367-2380 (2004).

    Article  CAS  Google Scholar 

  35. W. M. Huang, J. F. Su, M. H. Hong, and B. Yang, “Pile-up and sink-in in micro-indentation of a NiTi shape-memory alloy,” Scr. Mater., 53, No. 9, 1055-1057 (2005).

    Article  CAS  Google Scholar 

  36. A. Leyland and A. Matthews, “On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behavior,” Wear, 246, No. 1-2, 1-11 (2000).

    Article  CAS  Google Scholar 

  37. L. A. Donohue, J. Cawley, and D. B. Lewis, “Investigation of super lattice coatings deposited by a combined steered arc evaporation and unbalanced magnetron sputtering technique,” Surf. Coat. Technol. 76-77, No. 1, 149-158 (1995).

    Article  Google Scholar 

  38. T. Zhang, S. L. Bai, Y. F. Zhang, and B. Thibaut, “Viscoelastic properties of wood materials characterized by nanoin- dentation experiments,” Wood Sci. Technol., 46, No. 5, 1003-1016 (2012).

    Article  CAS  Google Scholar 

  39. S. P. Wen, R. L. Zong, F. Zeng, S. Guo, and F. Pan, “Nanoindentation and nanoscratch behaviors of Ag/Ni multilayers,” Appl. Surf. Sci., 255, No. 8, 4558-4562 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the Key Program of the Education Department of Anhui Province (KJ2020A0282 and KJ2019A0127).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to H. X. Hu or L. Fan.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, H.X., Deng, Y.B., Fan, L. et al. Ano-Scale Mechanical, Viscoelastic, and Tribological Behaviors of Polyaryletherketone Modified Bismaleimide Blends. Mech Compos Mater 59, 825–836 (2023). https://doi.org/10.1007/s11029-023-10134-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-023-10134-6

Keywords

Navigation