Skip to main content
Log in

Strong and Tough Bulk Metallic Glass Composites Based on the Double-Network Concept

  • Published:
Mechanics of Composite Materials Aims and scope

A double-network concept is first adopted to toughen bulk metallic glasses (BMGs) by combining BMG cellular skeletons as the filler and a ductile alloy as the matrix. The strengthening and toughening mechanisms of these resulting composites are elucidated using FEM simulations. Three typical metallic glass composites with different cellular BMG skeletons, exhibiting a substantial increase in their tensile plasticity, are considered. Numerical results showed that these composites greatly exceeded the corresponding cellular skeletons in the tensile strength and toughness. The resulting composites far exceeded those of either of their parent materials in the most of their mechanical characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  1. W. H. Wang, C. Dong, and C. H. Shek, “Bulk metallic glasses,” Mater. Sci. Eng. R., 44, Nos. 2-3, 45-89 (2004).

    Google Scholar 

  2. P. Saini and R. L. Narayan, “On simultaneous enhancement in local yield strength and plasticity of short-term annealed bulk metallic glasses,” J. Alloys Comp., 898, 162960 (2022).

    Article  CAS  Google Scholar 

  3. L. Zhang, R. L. Narayan, H. M. Fu, U. Ramamurty, W. R. Li, Y. D. Li, and H. F. Zhang, “Tuning the microstructure and metastability of b-Ti for simultaneous enhancement of strength and ductility of Ti-based bulk metallic glass composites,” Acta Mater., 168, 24-36 (2019).

    Article  CAS  Google Scholar 

  4. L. Zhang, R. L. Narayan, B. A. Sun, T. Y. Yan, U. Ramamurty, J. Eckert, and H. F. Zhang, “Cooperative shear in bulk metallic glass composites containing metastable β-Ti dendrites,” Phys. Rev. Lett., 125, 055501 (2020).

    Article  CAS  Google Scholar 

  5. L. Zhang, H. F. Zhang, W. Q. Li, T. Gemming, P. Wang, M. Bönisch, D. Şopu, J. Eckert, and S. Pauly, “β-type Ti-based bulk metallic glass composites with tailored structural metastability,” J. Alloys Comp., 708, 972-981 (2017).

    Article  CAS  Google Scholar 

  6. P. C. Wong, S. M. Song, Y. Y. Nien, W. R. Wang, P. H. Tsai, J. L. Wu, and J. S. C. Jang, “Mechanical properties enhanced by the dispersion of porous Mo particles in the biodegradable solid and bi-phase core–shell structure of Mg-based bulk metallic glass composites for applications in orthopedic implants,” J. Alloys. Comp., 877, 160233 (2021).

    Article  CAS  Google Scholar 

  7. D. C. Hofmann, J. Y. Suh, A. Wiest, G. Duan, M. L. Lind, M. D. Demetriou, and W. L. Johnson, “Designing metallic glass matrix composites with high toughness and tensile ductility,” Nature, 451, 1085-1089 (2008).

    Article  CAS  Google Scholar 

  8. H. Y. Li, J. W. Qiao, Z. Wang, X. H. Shi, H. J. Yang, and Y. C. Wu, “A semi-empirical model for predicting yielding in metallic glass matrix composites,” Scripta Mater., 170, 71-75 (2019).

    Article  CAS  Google Scholar 

  9. J. W. Qiao, H. L. Jia, and P. K. Liaw, “Metallic glass matrix composites,” Mater. Sci. Eng. R, 100, 1-69 (2016).

    Article  Google Scholar 

  10. W. J. Gao, W. W. Zhang, T. Zhang, C. Yang, X. S. Huang, Z. Y. Liu, Z. Wang, W. H. Li, W. R. Li, L. Li, and L. H. Liu, “Large tensile plasticity in Zr-based metallic glass/ stainless steel interpenetrating-phase composites prepared by high pressure die casting,” Comp. Part B, 224, 109226 (2021).

    Article  CAS  Google Scholar 

  11. B. Sarac and J. Schroers, “From brittle to ductile: Density optimization for Zr-BMG cellular structures,” Scripta Mater., 68, No. 12, 921-924 (2013).

    Article  CAS  Google Scholar 

  12. Z. Liu, W. Chen, J. Carstensen, J. Ketkaew, R. Miguel, O. Mota, J. K. Guest, and J. Schroers, “3D metallic glass cellular structures,” Acta Mater., 105, 35-43 (2016).

    Article  CAS  Google Scholar 

  13. W. Chen, Z. Liu, H. M. Robinson, and J. Schroers, “Flaw tolerance vs. performance: A tradeoff in metallic glass cellular structures,” Acta Mater., 73, 259–274 (2014).

    Article  CAS  Google Scholar 

  14. S. S. Hirmukhe, K. E. Prasad, and I. Singh, “Finite element analysis of deformation and failure mechanisms in nanoscale hexagonal cellular structures of metallic glasses,” Mech. Mater., 160, 103946 (2021).

    Article  Google Scholar 

  15. D. Rajpoot, R. L. Narayan, L. Zhang, P. Kumar, H. F. Zhang, P. Tandaiya, and U. Ramamurty, “Fracture toughness of a rejuvenated β-Ti reinforced bulk metallic glass matrix composite,” J. Mater. Sci. Techn., 106, 225-235 (2022).

    Article  CAS  Google Scholar 

  16. R. L. Narayan, P. Tandaiya, G. R. Garrett, M. D. Demetriou, and U. Ramamurty, “On the variability in fracture toughness of ‘ductile’ bulk metallic glasses,” Scripta Mater., 102, 75-78 (2015).

    Article  CAS  Google Scholar 

  17. D. Rajpoot, R. L. Narayan, L. Zhang, P. Kumar, H. F. Zhang, P. Tandaiya, and U. Ramamurty, “Shear fracture in bulk metallic glass composites,” Acta Mater., 213, 116963 (2021).

    Article  CAS  Google Scholar 

  18. S. Y. Yuan, X. X. Song, and P. S. Branicio, “Tuning the mechanical properties of shape memory metallic glass composites with brick and mortar designs,” Scripta Mater., 186, 69-73 (2020).

    Article  CAS  Google Scholar 

  19. Y. P. Jiang, L. G. Sun, Q. Q. Wu, and K. Qiu, “Enhanced tensile ductility of metallic glass matrix composites with novel microstructure,” J. Non-Cryst. Solids, 459, 26-31 (2017).

    Article  CAS  Google Scholar 

  20. Z. D. Sha, C. M. She, G. K. Xu, Q. X. Pei, Z. S. Liu, T. J. Wang, and H. J. Gao, “Metallic glass-based chiral nanolattice: Light weight, auxeticity, and superior mechanical properties,” Mater. Today, 20, No. 10, 569-576 (2017).

    Article  CAS  Google Scholar 

  21. R. Liontas and J. R. Greer, “3D nano-architected metallic glass: Size effect suppresses catastrophic failure,” Acta Mater., 133, 393-407 (2017).

    Article  CAS  Google Scholar 

  22. C. Zhang, X. M. Li, S. Q. Liu, H. Liu, L. J. Yu, and L. Liu, “3D printing of Zr-based bulk metallic glasses and components for potential biomedical applications,” J. Alloys Comp., 790, 963-973 (2019).

    Article  CAS  Google Scholar 

  23. C. Zhang, D. Ouyang, S. Pauly, and L. Liu, “3D printing of bulk metallic glasses,” Mater. Sci. Eng. R, 145, 100625 (2021).

    Article  Google Scholar 

  24. J. P. Gong, “Materials both tough and soft,” Science, 344, No. 6180, 161-162 (2014).

    Article  CAS  Google Scholar 

  25. J. Y. Sun, X. H. Zhao, W. R. K. Illeperuma, O. Chaudhuri, K. H. Oh, D. J. Mooney, J. J. Vlassak, and Z. G. Suo, “Highly stretchable and tough hydrogels,” Nature, 489, 133-136 (2012).

    Article  CAS  Google Scholar 

  26. E. Ducrot, Y. L. Chen, M. Bulters, R. P. Sijbesma, and C. Creton, “Toughening elastomers with sacrificial bonds and watching them break,” Science, 344, No. 6180, 186-189 (2014).

    Article  CAS  Google Scholar 

  27. T. Okumura, R. Takahashi, K. Hagita, D. R. King, and J. P. Gong, “Improving the strength and toughness of macroscale double networks by exploiting Poisson’s ratio mismatch,” Scientific Reports, 11, 13280 (2021).

    Article  CAS  Google Scholar 

  28. F. Spaepen, “A microscopic mechanism for steady-state inhomogeneous flow in metallic glasses,” Acta Metall., 25, No. 4, 407-415 (1977).

    Article  CAS  Google Scholar 

  29. P. S. Steif, F. Spaepen, and J. W. Hutchinson, “Strain localization in amorphous metals,” Acta Metall., 30, No. 2, 447-455(1982).

    Article  CAS  Google Scholar 

  30. J. W. Hutchinson, “Generalizing J-2 flow theory: Fundamental issues in strain gradient plasticity,” Acta Mech. Sinica, 28, No. 4, 1078-1086 (2012).

    Article  CAS  Google Scholar 

  31. Y. F. Gao, “An implicit finite element method for simulating inhomogeneous deformation and shear bands of amorphous alloys based on the free-volume model,” Modell. Simul. Mater. Sci. Eng., 14, No. 8, 1329-1345 (2006).

    Article  CAS  Google Scholar 

  32. A. L. Gurson, “Continuum theory of ductile rupture by void nucleation and growth: part I-Yield criteria and flow rules for porous ductile media,” J. Eng. Mater-T ASME, 99, 2-15(1977).

    Article  Google Scholar 

  33. ABAQUS Theory Manual, HKS inc., 2010, 510.

  34. B. A. Sun, Y. C. Hu, D. P. Wang, Z. G. Zhu, P. Wen, W. H. Wang, C. T. Liu, and Y. Yang, “Correlation between local elastic heterogeneities and overall elastic properties in metallic glasses,” Acta Mater., 121, 266-276 (2016).

    Article  CAS  Google Scholar 

  35. R. T. Qu, M. Calin, J. Eckert, and Z. F. Zhang, “Metallic glasses: Notch-insensitive materials,” Scripta Mater., 66, No. 10, 733-736 (2012).

    Article  CAS  Google Scholar 

  36. S. Sinha, M. Komarasamy, T. H. Wang, R. S. Haridas, P. Agrawal, S. Shukla, S. Thapliyal, M. Frank, and R. S. Mishra, “Notch-tensile behavior of Al0.1CrFeCoNi high entropy alloy,” Mater. Sci. Eng. A, 774, 138918 (2020).

    Article  CAS  Google Scholar 

  37. D. M. Liu, S. F. Lin, S.F. Ge, Z.W. Zhu, H.M. Fu and H.F. Zhang, “A Ti-based bulk metallic glass composite with excellent tensile properties and significant work-hardening capacity,” Mater. Lett., 233, 107 (2018).

    Article  CAS  Google Scholar 

  38. T. Y. Yan, L. Zhang, R. L. Narayan, J. Y. Pang, Y. Wu, H. M. Fu, H. Li, H. F. Zhang, and U. Ramamurty, “Temperature-dependence of impact toughness of bulk metallic glass composites containing phase transformable β-Ti crystals,” Acta Mater., 229, 117827 (2022).

    Article  CAS  Google Scholar 

  39. L. Tian, R.L. Narayan, K. Zhou, R. Babicheva, U. Ramamurty, and Z. W. Shan, “A real-time TEM study of the deformation mechanisms in β-Ti reinforced bulk metallic glass composites,” Mater. Sci. Eng. A, 818, 141427 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China for the General Program (12072149), the Six Talent Peaks Project in Jiangsu Province (XCL-031), and the Fundamental Research Funds for Central Universities (NS2022012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Jiang.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Zhu, Y., Li, T. et al. Strong and Tough Bulk Metallic Glass Composites Based on the Double-Network Concept. Mech Compos Mater 59, 795–806 (2023). https://doi.org/10.1007/s11029-023-10132-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-023-10132-8

Keywords

Navigation