Skip to main content
Log in

Nonlinear Buckling Analysis of Stiffened Carbon Nanotube-Reinforced Cylindrical Shells Subjected to External Pressure in Thermal Environment

  • Published:
Mechanics of Composite Materials Aims and scope

The main aim of this paper is to study the nonlinear buckling behavior of carbon nanotube-reinforced (CNT-reinforced) cylindrical shells with the CNT-reinforced stiffeners under external pressure taking into account the effects of uniform temperature rise. A new design of stiffener system is proposed for CNT-reinforced cylindrical shells with five cases of the CNT distribution law for shell and stiffeners. A modified homogenization technique for CNT-reinforced stiffeners is developed and presented. Based on the Donnell shell theory and the von Kármán nonlinearity assumption, the Galerkin method is applied with the solution of deflection approximated in threeterm form, the critical buckling, and load-deflection postbuckling curves can be achieved in explicit expressions. Effects of the CNT-reinforced stiffeners, the thermal temperature, and the CNT-reinforced parameters on the external pressure buckling responses are numerically indicated and validated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. H. S. Shen, “Post-buckling analysis of pressure-loaded functionally graded cylindrical shells in thermal environments,” Eng. Struct. 25, No. 3, 487-497 (2003).

    Article  Google Scholar 

  2. H. Huang and Q. Han, “Nonlinear buckling and postbuckling of heated functionally graded cylindrical shells under combined axial compression and radial pressure,” Int. J. Non-Linear Mech. 44, No. 2, 209-218 (2009).

    Article  Google Scholar 

  3. H. Huang and Q. Han, “Research on nonlinear postbuckling of functionally graded cylindrical shells under radial loads,” Compos. Struct. 92, No. 6, 1352-1357 (2010).

    Article  Google Scholar 

  4. J. Zhang, S. Chen, and W. Zheng, “Dynamic buckling analysis of functionally graded material cylindrical shells under thermal shock,” Contin. Mech. Thermodyn. 32, 1095-1108 (2020).

    Article  CAS  Google Scholar 

  5. A. H. Sofiyev and D. Hui, “On the vibration and stability of FGM cylindrical shells under external pressures with mixed boundary conditions by using FOSDT,” Thin-Walled Struct. 134, 419-427 (2019).

    Article  Google Scholar 

  6. N. T. Phuong, N. T. Trung, T. D. Kien, H. D. Tuan, and V. H. Nam, “Nonlinear vibration of full-filled fluid corrugated sandwich functionally graded cylindrical shells,” J. Vib. Control, 27, No. 9-10, 1020-1035 (2021)

    Google Scholar 

  7. H. R. Esmaeili, H. Arvin, and Y. Kiani, “Axisymmetric nonlinear rapid heating of FGM cylindrical shells,” J. Therm. Stresses, 42, No. 4, 490-505 (2019).

    Article  Google Scholar 

  8. H. Huang, Y. Zhang, and Q. Han, “Inelastic buckling of FGM cylindrical shells subjected to combined axial and torsional loads,” Int. J. Struct. Stab. Dyn., 17, No. 9, 1771010 (2017).

  9. R. Karroubi and M. Irani-Rahaghi, “Rotating sandwich cylindrical shells with an FGM core and two FGPM layers: free vibration analysis,” Appl. Math. Mech. (Engl. Ed.), 40, No. 4, 563-578 (2019).

  10. H. S. Shen, “Postbuckling of nanotube-reinforced composite cylindrical shells in thermal environments. Part II: pressureloaded shells,” Compos. Struct., 93, No. 10, 2496-2503 (2011).

    Article  Google Scholar 

  11. H. S. Shen, C. Li, and X. H. Huang, “Assessment of negative Poisson’s ratio effect on the postbuckling of pressure-loaded FGCNTRC laminated cylindrical shells,” Mech. Based Des. Struct. Mach., (2021). https://doi.org/10.1080/15397734.2021.1880934.

    Article  Google Scholar 

  12. H. S. Shen and Y. Xiang, “Thermal buckling and postbuckling behavior of FG-GRC laminated cylindrical shells with temperature-dependent material properties,” Meccanica, 54, 283-297 (2019).

    Article  Google Scholar 

  13. H. S. Shen, Y. Xiang, “Postbuckling of functionally graded graphene-reinforced composite laminated cylindrical shells subjected to external pressure in thermal environments,” Thin-Walled Struct., 124, 151-160 (2018).

    Article  Google Scholar 

  14. H. S. Shen, Y. Xiang, “Effect of negative Poisson’s ratio on the postbuckling behavior of pressure-loaded FG-GRMMC laminated cylindrical shells,” Eng. Struct., 243, 112458 (2021).

    Article  Google Scholar 

  15. V. H. Nam, N. T. Trung, N. T. Phuong, V. M. Duc, and V. H. Nam, “Nonlinear torsional buckling of functionally graded carbon nanotube orthogonally reinforced composite cylindrical shells in thermal environment,” Int. J. Appl. Mech., 12, No. 7, 2050072 (2020).

  16. M. Mohammadi, M. Arefi, and S. A. Ahmadi, “Two-dimensional electro-elastic analysis of FG-CNTRC cylindrical laminated pressure vessels with piezoelectric layers based on third-order shear deformation theory,” J. Press. Vessel Technol. Trans. ASME, 142, No. 2, 021304 (2020).

  17. Z. G. Song, L. W. Zhang, and K. M. Liew, “Vibration analysis of CNT-reinforced functionally graded composite cylindrical shells in thermal environments,” Int. J. Mech. Sci., 115-116, 339-347 (2016).

    Article  Google Scholar 

  18. W. H. Liu, Z. Song, P. Qiao, and K. M. Liew, “Modeling of dynamic responses of CNT-reinforced composite cylindrical shells under impact loads,” Comput. Methods Appl. Mech. Eng., 313, 889-903 (2017).

    Article  Google Scholar 

  19. E. Hasrati, R. Ansari, and J. Torabi, “Nonlinear forced vibration analysis of FG-CNTRC cylindrical shells under thermal loading using a numerical strategy,” Int. J. Appl. Mech., 9, No. 8, 1750108 (2017).

  20. H. Safarpour, K. Mohammadi, M. Ghadiri, and M. M. Barooti, “Effect of porosity on flexural vibration of CNT-reinforced cylindrical shells in thermal environment using GDQM,” Int. J. Struct. Stab. Dyn., 18, No. 10, 1850123 (2018).

  21. M. H. Hajmohammad, R. Kolahchi, M. S. Zarei, and M. Maleki, “Earthquake induced dynamic deflection of submerged viscoelastic cylindrical shell reinforced by agglomerated CNTs considering thermal and moisture effects,” Compos. Struct., 187, 498-508 (2018).

    Article  Google Scholar 

  22. H. Hosseini and R. Kolahchi, “Seismic response of functionally graded-carbon nanotubes-reinforced submerged viscoelastic cylindrical shell in hygrothermal environment,” Phys. E: Low-Dimens. Syst. Nanostruct., 102, 101-109 (2018).

    Article  CAS  Google Scholar 

  23. H. S. Shen, P. Zhou, and T. Chen, “Post-buckling analysis of stiffened cylindrical shells under combined external pressure and axial compression,” Thin-Walled Struct., 15, No. 1, 43-63 (1993).

    Article  Google Scholar 

  24. H. S. Shen, “Post-buckling analysis of imperfect stiffened laminated cylindrical shells under combined external pressure and thermal loading,” Int. J. Mech. Sci., 40, No. 4, 339-355 (1998).

    Article  Google Scholar 

  25. T. Zeng and L. Wu, “Post-buckling analysis of stiffened braided cylindrical shells under combined external pressure and axial compression,” Compos. Struct., 60, No. 4, 455-466 (2003).

    Article  Google Scholar 

  26. V. N. Bakulin, D. A. Boitsova, and A. Y. Nedbai, “Parametric Resonance of a Three-Layered Cylindrical Composite Rib-Stiffened Shell*,” Mech. Compos. Mater., 57, 623-634 (2021).

    Article  Google Scholar 

  27. N. T. Phuong, V. H. Nam, N. T. Trung, V. M. Duc, and P. V. Phong, “Nonlinear stability of sandwich functionally graded cylindrical shells with stiffeners under axial compression in thermal environment,” Int. J. Struct. Stab. Dyn., 19, No. 7, 1950073 (2019).

  28. V. H. Nam, N. T. Phuong, C. V. Doan, and N. T. Trung, “Nonlinear thermo-mechanical stability analysis of eccentrically spiral stiffened sandwich functionally graded cylindrical shells subjected to external pressure,” Int. J. Appl. Mech., 11, No. 5, 1950045 (2019).

  29. R. Azarafza, A. Davar, M. S. Fayez, and J. E. Jam, “Free vibration of grid-stiffened composite cylindrical shell reinforced with carbon nanotubes,” Mech. Compos. Mater., 56, 505-522 (2020).

    Article  CAS  Google Scholar 

  30. A. Davar, R. Azarafza, M. S. Fayez, S. Fallahi, and J. E. Jam, “Dynamic response of a grid-stiffened composite cylindrical shell reinforced with carbon nanotubes to a radial impulse load,” Mech. Compos. Mater., 57, 181-204 (2021).

    Article  CAS  Google Scholar 

  31. D. T. Dong,V. H. Nam, N. T. Phuong, L. N. Ly,V. M. Duc, N. V. Tien, T. Q. Minh,V. T. Hung, and P. H. Quan. An analytical approach of nonlinear buckling behavior of longitudinally compressed carbon nanotube-reinforced (CNTR) cylindrical shells with CNTR stiffeners in thermal environment. ZAMM Appl. Math. Mech., 102, No. 4, e202100228 (2022).

  32. N. V. Tien, N. T. Phuong, V. M. Duc, T. Q. Minh, D. T. Dong, P. H. Quan, V. H. Nam, and L. N. Ly, “Nonlinear thermomechanical buckling of torsion-loaded cylindrical shells with eccentric stiffeners made from CNT-reinforced composite,” Iran. J. Sci. Technol. Trans. Mech. Eng., (2022). https://doi.org/10.1007/s40997-021-00482-w.

    Article  Google Scholar 

  33. N. T. Phuong, N. T. Trung, C. V. Doan, N. D. Thang, V. M. Duc, and V. H. Nam, “Nonlinear thermomechanical buckling of FG-GRC laminated cylindrical shells stiffened by FG-GRC stiffeners subjected to external pressure,” Acta Mech,. 231, 5125-5144 (2020).

    Article  Google Scholar 

  34. J. N. Reddy and J. H. Starnes, “General buckling of stiffened circular cylindrical shells according to a Layerwise theory,” Comput. Struct., 49, No. 4, 605-616 (1993).

    Article  Google Scholar 

  35. M. Baruch and J. Singer, “Effect of eccentricity of stiffeners on the general instability of stiffened cylindrical shells under hydro-static pressure,” J. Mech. Eng. Sci., 5, No. 1, 23-27 (1963).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vu Hoai Nam.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, D.T., Hieu, P.T., Duc, V.M. et al. Nonlinear Buckling Analysis of Stiffened Carbon Nanotube-Reinforced Cylindrical Shells Subjected to External Pressure in Thermal Environment. Mech Compos Mater 59, 779–794 (2023). https://doi.org/10.1007/s11029-023-10131-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-023-10131-9

Keywords

Navigation