Skip to main content
Log in

Influence of Polyethersulfone on the Fracture Toughness of Epoxy Matrices and Reinforced Plastics on Their Basis

  • Published:
Mechanics of Composite Materials Aims and scope

The physical-mechanical properties of epoxy matrices modified with polyethersulfone (PES) and unidirectional glass- and carbon-fiber-reinforced plastics (GFRP and CFRP) based on them were investigated. The fracture toughness of epoxy matrices modified with 20 wt% PES, increased by 4.3 times. The delamination energy of GFRP and CFRP with this content of PES in the matrix increases by 50 and 65%, respectively. A correlation between the fracture toughness of modified matrices and the delamination toughness of GFRP and CFRP was established, and the influence of structure of the matrices on the fracture toughness of the reinforced plastics was demonstrated. A significant increase in the fracture toughness of the matrices and reinforced plastics was also observed during the formation of extended phases enriched with PES.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

References

  1. E. O. Ozgul and M. H. Ozkul, “Effects of epoxy, hardener, and diluent types on the workability of epoxy mixtures,” Constr. Build. Mater., 158, 369-377 (2018).

    Article  Google Scholar 

  2. Y. Li, B. Li, and W. Chen, “A study on the reactive diluent for the solvent-free epoxy anticorrosive coating, J. Chem. Pharma. Res., 6, No. 7, 2466-2469 (2014).

    CAS  Google Scholar 

  3. L. Shen, Y. Wang, Q. Zhao, F. Luo, J. Chen, M. Lu, L. Liang, K. Wu, and J. Shi, “Influence of a long-side-chain-containing reactive diluent on the structure and mechanical properties of UV-cured films,” Polymer Int., 65, No. 10, 1150-1156 (2016).

    Article  CAS  Google Scholar 

  4. Animesh Sinha, Nazrul Islam Khan, Subhankar Das, Jiawei Zhang, and Sudipta Halder, “Effect of reactive and nonreactive diluent on mechanical properties of epoxy resin,” High Perf. Polym., 30, 1159-1168 (2018).

    Article  CAS  Google Scholar 

  5. M. Khalina, M. H. Beheshty, and A. Salimi, “The effect of reactive diluent on mechanical properties and microstructure of epoxy resins,” Polym. bull., 76, 3905-3927 (2019).

    Article  CAS  Google Scholar 

  6. M. N. Kopitsyna, I. V. Bessonov, and S. V. Kotomin, “Fracture strength of epoxy binders modified by thermoplastic polysulfone and furfural-acetone resin,” Engineer. J. Sci. Innovat., 60, No. 12, 1-9 (2016).

    Google Scholar 

  7. K. A. Al-Shiblawi, V. F. Pershin, and V. P. Yartsev, “Modification of epoxy resins: modern condition and prospects. Part I. Modification of Nanoparticles,” Adv. Mater. Technol., No. 2, 68-78 (2018).

  8. K. A. Al-Shiblawi, V. F. Pershin, and V. P. Yartsev, “Modification of epoxy resins: modern condition and prospects. Part II. Graphene and graphene oxide modification,” Adv. Mater. Technol., No. 4, 42-53 (2018).

  9. A. S. Mostovoi, A. S. Nurtazina, and Yu. A. Kadykova, “Epoxy composites with increased operational characteristics, filled with dispersed mineral fillers,” Proceedings of VSUET, 80, No. 3, 330-335 (2018).

    Google Scholar 

  10. T. S. Kurkin, E. P. Tikunova, A. V. Solopchenko, M. Yu. Yablokova, and A. N. Ozerin Polymer composite materials based on thermoset epoxy binders modified with diamond-containing nanofillers,” Polym. Sci. Series S., 58, 50-61 (2016).

  11. E. M. Nurullaev, “Influence of high-frequency radiation on the deformation behavior of composites based on low-molecular rubbers filled with silicon dioxide,” Mech. Compos. Mater., 56, No. 3, 329-338 (2020).

    Article  CAS  Google Scholar 

  12. A. Drah, N. Z. Tomić, T. Kovačević, V. Djokić, M. Tomić, R. J. Heinemann, and A. Marinkovićet, “Structurally and surface-modified alumina particles as a reinforcement in polyester-based composites with an improved toughness,” Mech. Compos. Mater., 56, No. 2, 249-260 (2020).

    Article  CAS  Google Scholar 

  13. M. M. Buzmakova, V. G. Gilev, A. F. Merzlyakov, and S.V. Rusakov, “Physical properties of an epoxy composite modified by C60 fullerenes,” Mech. Compos. Mater., 54, No. 4, 545-552 (2018).

    Article  CAS  Google Scholar 

  14. S. V. Smirnov, I. A. Veretennikova, V. M. Fomin, A. A. Filippov, and T. A. Brusentseva, “Studying the viscoelastic properties of an epoxy resin strengthened with silicon dioxide nanoparticles by instrumented microindentation,” Mech. Compos. Mater., 55, No. 3, 337-348 (2019).

    Article  CAS  Google Scholar 

  15. O. Yu. Bogomolova, I. R. Biktagirova, M. P. Danilaev, M. A. Klabukov, Yu. E. Polsky, Pillai Saju, and A. A. Tsentsevitsky, “Effect of adhesion between submicron filler particles and a polymeric matrix on the structure and mechanical properties of epoxy-resin-based compositions,” Mech. Compos. Mater., 53, No. 1, 117-122 (2017).

  16. A. Białkowska, M. Bakar, and M. Przybyłek, “Effect of nonisocyanate polyurethane and nanoclay on the mechanical properties of an epoxy resin,” Mech. Compos. Mater., 54, No. 5, 665-674 (2018).

    Article  Google Scholar 

  17. J. Nasser, L. Zhang, and H. Sodano, “Laser induced graphene interlaminar reinforcement for tough carbon fiber/epoxy composites,” Compos. Sci. Technol., 201 (2020). DOI: https://doi.org/10.1016/j.compscitech.2020.108493

  18. Z. Ay and M. Tanoğlu, “The effect of single-walled carbon nanotube (SWCNT) concentration on the mechanical and rheological behavior of epoxy matrix,” Mech. Compos. Mater., 56, No. 4, 523-532 (2020).

    Article  CAS  Google Scholar 

  19. J. Wang, R. Liu, and X. Jian, “Introduction to epoxy/thermoplastic blends,” Handbook of epoxy blends, 429-458 (2017).

  20. T. V. Brantseva, S. V. Antonov, N. M. Smirnova, V. I. Solodilov, R. A. Korohin, I. Y. Gorbunova, and A. V. Shapagin, “Epoxy modification with poly(vinyl acetate) and poly(vinyl butyral). I. Structure, thermal, and mechanical characteristics,” J. Appl. Polym. Sci., 133, No. 41, 44081-44094 (2016).

    Article  Google Scholar 

  21. Y. Rosetti, P. Alcouffe, J.-P. Pascault, J.-F. Gerard, and F. Lortie, “Polyether sulfone-based epoxy toughening: from micro- to nano-phase separation via pes end-chain modification and process engineering,” Materials., 11, No. 10, 1960 (2018).

  22. V. I. Solodilov, R. A. Korokhin, Yu. A. Gorbatkina, and A. M. Kuperman, “Comparison of fracture energies of epoxy-polysulfone matrices and unidirectional composites based on them,” Mech. Compos. Mater., 51, No. 2, 177-190 (2015).

    Article  CAS  Google Scholar 

  23. A. V. Shapagin, N. Yu. Budylin, A. E. Chalykh, V. I. Solodilov, R. A. Korokhin, and A. A. Poteryaev, “Phase equilibrium, morphology, and physico-mechanics in epoxy–thermoplastic mixtures with upper and lower critical solution temperatures,” Polymers, 13, No. 1, 1-12 (2021).

    Google Scholar 

  24. V. I. Solodilov and Yu. A. Gorbatkina, “Properties of unidirectional gfrps based on an epoxy resin modified with polysulphone or an epoxyurethane oligomer,” Mech. Compos. Mater., 42, No. 6, 513-526 (2006).

    Article  CAS  Google Scholar 

  25. A. E. Chalykh, V. K. Gerasimov, A. E. Bukhteev, A. V. Shapagin, G. Kh. Kudryakova, T. V. Brantseva, Yu. A. Gorbatkina, and M. L. Kerber, “Compatibility and phase structure evolution in polysulfone-curable epoxy oligomer blends,” Polym. Sci. Series A., 45, No. 7, 676-685 (2003).

    Google Scholar 

  26. J. E. Robertson, T. C. Ward, and A. J. Hill, “Thermal mechanical, physical, and transport properties of blends of novel oligomer and thermoplastic polysulfone,” Polymer, 41, 6251-6262 (2000).

    Article  CAS  Google Scholar 

  27. Crack Resistance of Cured Polymer Compositions [in Russian], P. G. Babaevsky, S. G. Kulik, M., Khimia (1991).

  28. V. I. Solodilov, S. L. Bashenov, Yu. A. Gorbatkina, and A. M. Kuperman, “Determination of the interlaminar fracture toughness of glass-fiber-reinforced plastics on ring segments,” Mech. Compos. Mater., 39, No. 5, 401-414 (2003).

    Article  Google Scholar 

  29. B. F. Sorensen and T. K. Jacobsen, “Large-scale bridging in composites: R-curves and bridging laws,” Compos., Part A, 29, No. 11, 1443-1451 (1998).

    Article  Google Scholar 

  30. T. K. Jacobsen and B. F. Sorensen, “Mode I intra-laminar crack growth in composites – modeling of R-curves from measured bridging laws,” Compos., Part A, 32, No. 1, 1-11 (2001).

    Article  Google Scholar 

  31. R. A. Korokhin, V. I. Solodilov, U. G. Zvereva, D. V. Solomatin, Y. A. Gorbatkina, A. V. Shapagin, and M. Y. Bamborin, “Epoxy polymers modified with polyetherimide. Part II: physicomechanical properties of modified epoxy oligomers and carbon fiber reinforced plastics based on them,” Polym. Bull., 77, No. 4, 2039-2057 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The work was carried out within the framework of the State Assignment of the N. N. Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences (FRCCP RAS). The work is dedicated to the 70th anniversary of the Laboratory of Reinforced Plastics of FRCCP RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Solodilov.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solodilov, V.I., Tretyakov, I.V., Petrova, T.V. et al. Influence of Polyethersulfone on the Fracture Toughness of Epoxy Matrices and Reinforced Plastics on Their Basis. Mech Compos Mater 59, 743–756 (2023). https://doi.org/10.1007/s11029-023-10128-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-023-10128-4

Keywords

Navigation