Skip to main content
Log in

Multiphase Fea-Approach for Non-Linear Deformation Prediction and Fibre-Reinforced Plastics Failure

  • Published:
Mechanics of Composite Materials Aims and scope

The study shows that the combination of several finite elements with different deformation models of continuum (elastic, elastic-plastic, isotropic and orthotropic) at common nodes makes it possible to predict complex nonlinear deformation of fibrous composites. There is considered only elastic deformation in the built-in libraries of anisotropic materials in well-known commercial FEA packages. Calculations of nonlinear mechanical behavior and failure under loading in the warp/weft and diagonal directions were performed on the example of fibreglass plastic STEF. Complex behavior of STEF is shown to be described by combining three phases with simple constitutive models: two brittle monotropic (imitate dry warp and weft fibers) and one isotropic elastic-plastic (imitate polymer). To determine the elasticity and fracture parameters of each model, it is proposed to apply experimental STEF stress-strain diagrams in the warp/weft and diagonal directions. The failure criteria for the above mentioned models are independent and are recorded in terms of strain. The strain mapping and damage development in STEF near the hole was studied by DIC and acoustic emission methods. ANSYS Workbench (Autodyn) software, critical distance theory, and failed finite element erosion technology were used to evaluate the fracture load of tensile specimens with a hole. The results of fracture loads and inelastic deformation fields calculations are in good agreement with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.

Similar content being viewed by others

References

  1. P. K. Mallik, Fiber-Reinforced Composites: Materials, Manufacturing and Design, CRC Press (2008).

    Google Scholar 

  2. I. M. Daniel, O. Ishai, Engineering Mechanics of Composite Materials, 2nd edition, Oxford University Press (2006).

  3. URL: https://ansyshelp.ansys.com (date 30.06.2021).

  4. G. Sun, L. Wang, D. Chen, and Q. Luo, “Tensile performance of basalt fiber composites with open circular holes and straight notches,” Int. J. Mech. Sci., 176, Paper No. 105517 (2020).

  5. P. P. Camanho, P. Maimí, and C. G. Dávila, “Prediction of size effects in notched laminates using continuum damage mechanics,” Compos. Sci. and Technol., 67, No. 13, 2715-2727 (2007).

    Article  CAS  Google Scholar 

  6. A. C. Orifici, I. Herszberg, and R. S. Thomson, “Review of methodologies for composite material modelling incorporating failure,” Compos. Struct., 86, Nos. 1-3, 194-210 (2008).

    Article  Google Scholar 

  7. K. Song, Y. Li, and C. A. Rose, “Continuum damage mechanics models for the analysis of progressive failure in open-hole tension laminates,” Collection of Technical Papers - AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conf., Art. No. AIAA 2011-1861 (2011).

  8. J. Reiner, T. Feser, D. Schueler, M. Waimer, and R. Vaziri, “Comparison of two progressive damage models for studying the notched behavior of composite laminates under tension,” Compos. Struct., 207, 385-396 (2019).

    Article  Google Scholar 

  9. M. Nikbakht, H. H. Toudeshky, and B. Mohammadi, “Experimental validation of an empirical nonlinear shear failure model for laminated composite materials,” J. Compos. Mater., 51, No. 6, 2331-2345 (2017).

    Article  Google Scholar 

  10. G. Odegard, K. Searles, and M. Kumosa, “A continuum elastic-plastic model for woven-fabric/polymer-matrix composite materials under biaxial stresses,” Compos. Sci. and Technol., 61, No. 16, 2501-2510 (2001).

    Article  CAS  Google Scholar 

  11. S. B. Sapozhnikov and S. I. Cheremnykh, “The strength of fibre reinforced polymer under a complex loading,” J. Compos. Mater., 47, Nos. 20-21, 2525-2552 (2013).

    Article  Google Scholar 

  12. Z. W. Xu, Y. H. Chen, W. J. Cantwell, and Z. W. Guan, “Multiscale modelling of scaling effects in the impact response of plain woven composites,” Compos.: Part B, 188, paper No. 107885 (2020).

  13. S. V. Lomov, A. V. Gusakov, G. Huysmans, A. Prodromou, and I. Verpoest, “Textile geometry preprocessor for mesomechanical models of woven composites,” Compos. Sci. and Technol. 60, No. 11, 2083-2095 (2000).

    Article  Google Scholar 

  14. H. Lin, X. S. Zeng, M. Sherburn, A. C. Long, and M. J. Clifford, “Automated geometric modelling of textile structures,” Textile Research J., 82, No. 16, 1689-1702 (2012).

    Article  CAS  Google Scholar 

  15. S. D. Green, M. V. Matveev, A. C. Long, D. Ivanov, and S. R. Hallett, “Mechanical modelling of 3D woven composites considering realistic unit cell geometry,” Compos. Struct., 118, 284-293 (2014).

    Article  Google Scholar 

  16. L. F. Varandas, G. Catalanotti, A. R. Melro, and B. G. Falzon, “On the importance of nesting considerations for accurate computational damage modelling in 2D woven composite materials,” Computational Mater. Sci., 172, paper No. 109323 (2020).

  17. E. V. Iarve, D. Mollenhauer, T. J. Whitney, and R. Kim, “Strength prediction in composites with stress concentrations: classical Weibull and critical failure volume methods with micromechanical considerations,” J. Mater. Sci., 41, No. 20, 6610-6621 (2006).

    Article  CAS  Google Scholar 

  18. J. Wang, P. J. Callus, and M. K. Bannister, “Experimental and numerical investigation of the tension and compression strength of unnotched and notched quasi-isotropic laminates,” Compos. Struct., 64, Nos. 3-4, 297-306 (2004).

    Article  Google Scholar 

  19. A. N. Fedorenko, B. N. Fedulov, and E. V. Lomakin, “Failure analysis of laminated composites with shear nonlinearity and strain-rate response,” Procedia Structural Integrity, 18, 432-442 (2019).

    Article  Google Scholar 

  20. H. Neuber, “Theory of stress concentration for shear-strained prismatical bodies with arbitrary nonlinear stress-strain law,” J. Appl. Mech., Transactions ASME, 28, No. (4), 544-550 (1960).

  21. J. M. Whitney and R. J. Nuismer, “Stress Fracture Criteria for Laminated Composites Containing Stress Concentrations,” J. Compos. Mater., 8, No. 3, 253-265 (1974).

    Article  Google Scholar 

  22. G. H. Erçin, P. P. Camanho, J. Xavier, G. Catalanotti, S. Mahdi, and P. Linde, “Size effects on the tensile and compressive failure of notched composite laminates,” Compos. Struct., 96, 736-744 (2013).

    Article  Google Scholar 

  23. L. Susmel and D. Taylor, “On the use of the Theory of Critical Distances to predict static failures in ductile metallic materials containing different geometrical features,” Eng. Fracture Mech., 75, No. 15, 4410-4421 (2008).

    Article  Google Scholar 

  24. S. B. Sapozhnikov, Defects and Strength of Reinforced Plastics [in Russian], Monograph, Chelyabinsk, ChSTU (1994).

  25. URL: https://www.electroizol.ru (date 20.01.2022).

  26. URL: https://www.vallen.de/zdownload/pdf/AMSY-6_Description.pdf (date 30.06.2020).

  27. C. Medina, C. Canales, C. Arango, and P. Flores, “The influence of carbon fabric weave on the in-plane shear mechanical performance of epoxy fiber-reinforced laminates,” J. Compos. Mater., 48, No. 23, 2871-2878 (2014).

    Article  Google Scholar 

  28. W. Tan and B. G. Falzon, “Modelling the nonlinear behavior and fracture process of AS4/PEKK thermoplastic composite under shear loading,” Compos. Sci. and Technol., 126 (February), 60-77 (2016).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. B. Sapozhnikov.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sapozhnikov, S.B., Guseynov, K.A. & Zhikharev, M.V. Multiphase Fea-Approach for Non-Linear Deformation Prediction and Fibre-Reinforced Plastics Failure. Mech Compos Mater 59, 283–298 (2023). https://doi.org/10.1007/s11029-023-10096-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-023-10096-9

Keywords

Navigation