Skip to main content
Log in

Effect of Material State and Temperature on Nonlinear Viscoelastic Response: 3D Constitutive Model and Incremental Formulation for Numerical Analysis

  • Published:
Mechanics of Composite Materials Aims and scope

There is a growing need to develop accurate nonlinear viscoelastic material models and tools that could describe the complex nonlinear behavior of being developed composite material systems at their simulations at high loads and temperatures or to move the industry towards more sustainable bio-based alternatives. Developing such models in 3D formulation for materials with changing material state due to physical aging, change of crystallinity or degree of cure is also imperative since the loading is mostly multiaxial in real-live applications and manufacturing processes. The present paper contains the derivation of two material models with varying complexity and accuracy. The incremental procedure for implementation of the nonlinear viscoelastic material model within the numerical analysis was presented. Two relatively simple simulations with the incremental methodology developed were performed, namely triaxial mechanical loading and thermal stress development during the manufacturing process. The results obtained showed significant differences between stresses calculated using 1D and 3D simulations. Significantly higher stresses obtained in 3D simulations demonstrated the necessity of 3D models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

References

  1. W. Flugge, Viscoelasticity, Blaisdel Publishing Company, Waltham, MA (1967).

    Google Scholar 

  2. R. M. Christensen, Theory of Viscoelasticity: An Introduction; Academic Press, New York (1982).

    Google Scholar 

  3. R. K. Abu Al-Rub, A. H. Tehrani, and M. K. Darabi, “Application of a large deformation nonlinear-viscoelastic viscoplastic viscodamage constitutive model to polymers and their composites,” Int. J. Damage Mech., 24, No. 2, 198-244 (2014).

  4. E. Marklund, J. Eitzenberger, and J. Varna “Nonlinear viscoelastic viscoplastic material model including stiffness degradation for hemp/lignin composites,” Compos. Sci. and Technol., 68, No. 9, 2156-2162 (2008).

    Article  CAS  Google Scholar 

  5. L. J. Zapas and J. M. Crissman, “Creep and recovery behavior of ultra-high molecular weight polyethylene in the region of small uniaxial deformations,” Polymer, 25, No. 1, 57-62 (1984).

    Article  CAS  Google Scholar 

  6. E. Sparnins, A. Pupurs, J. Varna, R. Joffe, K. Nattinenet, and J. Lampinen, “The moisture and temperature effect on mechanical performance of flax/starch composites in quasi-static tension,” Polymer Compos., 32, No.12, 2051-2061 (2011).

    Article  CAS  Google Scholar 

  7. J. Varna, E. Sparnins, R. Joffe, K. Nattinen, and J. Lampinen,” Time dependent behavior of flax/starch composites,” Mech. Time-Dependent Mater., 16, No. 1, 47-70 (2012).

  8. K. Giannadakis, P. Mannberg, R. Joffe, and J. Varna,” The source of inelastic behavior of Glass Fibre/Vinilester noncrimp farbic [±45]s laminates,” J. Reinf. Plast. and Compos., 30, No. 12, 1015-1028 (2011).

  9. A. E. Green and R. S. Rivlin, “The mechanics of nonlinear materials with memory,” Archive for Rational Mechanics and Analysis, 1, 1-21 (1957).

    Article  Google Scholar 

  10. W. N. Findley and K. Onaran, “Product form of kernel functions for nonlinear viscoelasticity of PVC under constant rate stressing,” J. Rheology, 12, No. 2, 217-242 (1968).

    CAS  Google Scholar 

  11. C. W. McGuirt and G. Lianis, “Constitutive equations for viscoelastic solids under finite uniaxial and biaxial deformations”, Transactions of the Society of Rheology, 14, No. 2, 117-134 (1970).

    Article  CAS  Google Scholar 

  12. J. Smart and J. G. Williams, “A comparison of single-integral nonlinear viscoelasticity theories,” J. Mech. and Physics of Solids, 20, No. 5, 313-324 (1972).

    Article  Google Scholar 

  13. J. M. Caruthers, D. B. Adolf, R. S. Chambers, and P. Shrikhande, “A thermodynamically consistent, nonlinear viscoelastic approach for modeling glassy polymers,” Polymer, 45, No. 13, 4577-4597 (2004).

    Article  CAS  Google Scholar 

  14. F. J. Lockett, Nonlinear Viscoelastic Solids, Academic Press, London (1972).

    Google Scholar 

  15. A. S. Khan, O. Lopez-Pamies, and R. Kazmin, “Thermo-mechanical large deformation response and constitutive modeling of viscoelastic polymers over a wide range of strain rates and temperatures,” Int. J. Plasticity, 22, 581-601 (2006).

    Article  CAS  Google Scholar 

  16. Y. C. Lou and R. A. Schapery, “Viscoelastic characterization of a nonlinear fiber-reinforced plastic,” J. Compos. Mater., 5, 208-234 (1971).

    Article  CAS  Google Scholar 

  17. R. A. Schapery, “Nonlinear viscoelastic and viscoplastic constitutive equations based on thermodynamics,” Mech. Time-Dependent Mater., 1, No. 2, 209-240 (1997).

    Article  Google Scholar 

  18. R. A. Schapery, “Further development of a thermodynamic constitutive theory: stress formulation,” Purdue University report No. 69-2 (1969).

  19. R. A. Schapery, “On the Characterization of nonlinear viscoelastic materials,” J. Polymer Eng. and Sci., 9, 295-310 (1969).

    Article  CAS  Google Scholar 

  20. R. T. S. Freire, S. G. Nunes, S. C. Amico, N. J. Al-Ramahi, R. Joffe, and J. Varna, “On determination of linear viscoelastic compliance and relaxation functions for polymers in one tensile test”, Mech. Compos. Mater., 58, No. 6, 765-786 (2022).

    Article  Google Scholar 

  21. L. Pupure, J. Varna, and R. Joffe. “Natural fiber composites: challenges simulating inelastic response in strain controlled tensile tests,” J. Compos. Mater., 50, No. 5, 575-587 (2016).

    Article  Google Scholar 

  22. J. Varna, L. Pupure, and R. Joffe, “Incremental forms of Schapery’s model: convergence and inversion to simulate strain controlled ramps,” Mechanics of Time-Dependent Materials, 20, No. 4, 353-552 (2016).

    Article  Google Scholar 

  23. L. Pupure, J. Varna, and R. Joffe, “Methodology for macro-modeling of bio-based composites with inelastic constituents,” Compos. Sci. and Tehcnol., 163, 41-48 (2018).

    Article  CAS  Google Scholar 

  24. M. Benavente, L. Marcin, A. Courtois, M. Lévesque, and E. Ruiz, “Numerical analysis of viscoelastic process-induced residual distortions during manufacturing and post-curing,” Compos., Part A, 107, 205-216 (2018).

    Article  CAS  Google Scholar 

  25. M. Machado, U. D. Cakmak, I. Kallai, and Z. Major, “Thermomechanical viscoelastic analysis of woven-reinforced thermoplastic-matrix composites,” Compos. Struct., 157, 256-264 (2016).

    Article  Google Scholar 

  26. Y. K. Kim and S. R. White, “Stress relaxation behavior of 3501‐6 epoxy resin during cure,” Polymer Eng. and Sci., 36, No. 23, 2852-2862 (1996).

    Article  CAS  Google Scholar 

  27. A. Ding, S. Li, J. Wang, A. Ni, and L. Zu, “A new path-dependent constitutive model predicting cure-induced distortions in composite structures,” Compos., Part A, 95, 183-196 (2017).

    Article  CAS  Google Scholar 

  28. J. T. Zhang, M. Zhang, S. X. Li, M. J. Pavier, and D. J. Smith, “Residual stresses created during curing of a polymer matrix composite using a viscoelastic model,” Compos. Sci. and Technol., 130, 20-27 (2016).

    Article  CAS  Google Scholar 

  29. D. J. O’Brien, P. T. Mather, and S.R. White, “Viscoelastic properties of an epoxy resin during cure,” J. Compos. Mater., 35, No. 10, 883-904 (2001).

    Article  Google Scholar 

  30. A. Ding, S. Li, J. Wang, and L. Zu, “A three-dimensional thermo-viscoelastic analysis of process-induced residual stress in composite laminates”, Compos. Struct., 129, 60-69 (2015).

    Article  Google Scholar 

  31. A. Ding, S. Li, J. Sun, J. Wang, and L. Zu, “A thermo-viscoelastic model of process-induced residual stresses in composite structures with considering thermal dependence,” Compos. Struct., 136, 34-43 (2016).

    Article  Google Scholar 

  32. N. Zobeiry, S. Malek, R. Vaziri, and A. Poursartip, “A differential approach to finite element modelling of isotropic and transversely isotropic viscoelastic materials,” Mech. Mater., 97, 76-91 (2016).

    Article  Google Scholar 

  33. M. Abida, J. Mars, F. Gehring, A. Vivet, and F. Danmak, “Anisotropic elastic-viscoplastic modelling of a quasiunidirectional flax fibre-reinforced epoxy subjected to low-velocity impact”, Lecture Notes in Mech. Eng., 171-178 (2018).

  34. A. Courtois, M. Hirsekorn, M. Benavente, A. Jaillon, L. Marcin, E. Ruiz, and M. Lévesque, “Viscoelastic behavior of an epoxy resin during cure below the glass transition temperature: Characterization and modeling,” J. Compos. Mater., 53, No. 2, 155-171 (2019).

    Article  CAS  Google Scholar 

  35. A. Courtois, L. Marcin, M. Benavente, E. Ruiz, and M. Lévesque, “Numerical multiscale homogenization approach for linearly viscoelastic 3D interlock woven composites,” Int. J. Solids and Struct., 15, No. 163, 61-74 (2019).

    Article  Google Scholar 

  36. S. Saseendran, D. Berglund, J. Varna, and P. Fernberg, “Incremental 1D viscoelastic model for residual stress and shape distortion analysis during composite manufacturing processes,” Conf. Proc. Society of Experimental Mechanics Series, 65-76 (2020).

  37. L. Pupure, N. Doroudgarian, and R. Joffe, “Moisture uptake and resulting mechanical response of biobased composites. I. constituents,” Polymer Compos., 35, No. 6, 1150-1159 (2014).

    Article  CAS  Google Scholar 

  38. L. Pupure, S. Saseendran, J. Varna, and M. Basso, “Effect of degree of cure on viscoplastic shear strain development in layers of [45/−45]s glass fibre/ epoxy resin composites,” J. Compos. Mater., 52, No. 24, 3277-3288 (2018).

    Article  CAS  Google Scholar 

  39. S. G. Nunes, S. Saseendran, R. Joffe, S.C. Amico, P. Fernberg, and J. Varna, “On temperature-related shift factors and master curves in viscoelastic constitutive models for thermoset polymers,” Mech. Compos. Mater., 56, No. 5, 573-590 (2020).

    Article  Google Scholar 

  40. C. Suna, J. Xua, X. Chena, J. Zhenga, Y. Zhenga, and W. Wangb, “Strain rate and temperature dependence of the compressive behavior of a composite modified double-base propellant,” Mech. Mater., 89, 35-46 (2015).

    Article  Google Scholar 

  41. S. Saseendran, D. Berglund, and J. Varna, “Viscoelastic model with complex rheological behavior (VisCoR): incremental formulation,” Adv. Manufacturing: Polymer & Compos. Sci., 6, No. 1, 1-16 (2020).

    CAS  Google Scholar 

  42. R. Brouwer, “Nonlinear viscoelastic characterization of transversely isotropic fibrous composites under biaxial loading,” Ph.D. thesis Free Univ of Brussels (1986).

  43. S.G. Nunes., R. Joffe, N. Emami, P. Fernberg, S. Saseendran, A. Esposito, S. C. Amico and J. Varna, “Physical aging effect on viscoelastic behavior of polymers,” Compos., Part C, 7, 100223 (2022).

  44. S. G. Nunes, Z. Al-Maqdasi, P. Fernberg, S.C. Amico, and J. Varna, “Does the viscoelastic behavior of fully cured epoxy depend on the thermal history during curing?” J. Compos. Mater., 56, No. 22, 3439-3453 (2022).

    Article  CAS  Google Scholar 

  45. M.R. Kamal and S. Sourour, “Kinetics and thermal characterization of thermoset cure,” Polymer Eng. and Sci., 13, No. 1., 59-64 (1973).

    Article  CAS  Google Scholar 

  46. ANSYS 2019, R3–Structural Analysis Guide, www.ansyshelp.ansys.com

  47. J. M. Svanberg and J.A. Holmberg,” Prediction of shape distortions Part I. FE-implementation of a pathdependent constitutive model,” Compos., Part A, 35, No. 6, 711-721 (2004).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Pupure.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varna, J., Pupure, L. Effect of Material State and Temperature on Nonlinear Viscoelastic Response: 3D Constitutive Model and Incremental Formulation for Numerical Analysis. Mech Compos Mater 59, 193–218 (2023). https://doi.org/10.1007/s11029-023-10092-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-023-10092-z

Keywords

Navigation