Skip to main content
Log in

Effect of Halloysite Nanotubes on Matrix Microcracking in Carbon Fiber/Epoxy Composites

  • Published:
Mechanics of Composite Materials Aims and scope

Matrix microcracking is considered the main factor responsible for the gas permeation in linerless pressure vessels and storage tanks. The addition of halloysite nanotubes (HNTs) to them at different concentrations was studied in order to enhance their microcrack resistance. A 50% increase in the cracking onset stress was found at a 5% addition of HNTs to the epoxy matrix. Moreover, a 60% increase was observed at a similar level of microcrack density compared with that of neat epoxy. A reactive diluent was used as an alternative to keep the viscosity suitable for the filament winding process and to offset the rise in viscosity by HNT incorporation. Despite the fact that the matrix fracture toughness increased even to 10% of HNTs, no growth in the microcrack resistance was found at more than 5% of HNTs. As a result, it was concluded that the microcracking phenomenon can be affected not only by the matrix fracture toughness, but also by the residual thermal stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. R. Talreja, S. Yalvac, L. D. Yats, and D. G. Wetters, “Transverse cracking and stiffness reduction in cross ply laminates of different matrix toughness,” J. Compos. Mater., 26, No. 11, 1644-1663 (1992).

    Article  CAS  Google Scholar 

  2. J. A. Nairn, in: R. Talreja, J-A Manson (eds.), Polymer Matrix Composites, Ch. 13, Elsevier Science (2001).

  3. J. A. Nairn and S. Hu, “The formation and effect of outer-ply microcracks in cross-ply laminates: A variational approach,” Eng. Fract. Mech., 41, No. 2, 203-221 (1992).

    Article  Google Scholar 

  4. J. F. Timmerman, M. S. Tillman, B. S. Hayes, and J. C. Seferis, “Matrix and fiber influences on the cryogenic microcracking of carbon fiber/epoxy composites,” Compos. Part A, Appl. Sci. Manuf., 33, 323-329 (2002).

    Article  Google Scholar 

  5. K. Mallick, J. Cronin, K. Ryan, S. Arzberger, and N. Munshi, “An integrated systematic approach to linerless composite tank development in 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference. Austin, Texas. United States (2005).

  6. A. J. Kinloch, S. J. Shaw, and D. L. Hunston, “Deformation and fracture behaviour of a rubber-toughened epoxy: 2. Failure criteria,” Polymer (Guildf), 24, No. 10, 1355-1363 (1983).

    Article  CAS  Google Scholar 

  7. R. Bagheri, B. T. Marouf, and R. A. Pearson, “Rubber-toughened epoxies: A critical review,” Polym. Rev., 49, No. 3, 201-225 (2009).

    Article  CAS  Google Scholar 

  8. M. R. Ricciardi, I. Papa, A. Langella, T. Langella, V. Lopresto, and V. Antonucci, “Mechanical properties of glass fibre composites based on nitrile rubber toughened modified epoxy resin,” Compos. Part B Eng., 139, 259-267 (2018).

    Article  CAS  Google Scholar 

  9. M. Agarwal, M. Arif, A. Bisht, V. K. Singh, and S. Biswas, “Investigation of toughening behavior of epoxy resin by reinforcement of depolymerized latex rubber,” Sci. Eng. Compos. Mater., 22, No. 4, 399-404 (2015).

    Article  CAS  Google Scholar 

  10. F. Ghadami, M. R. Dadfar, and M. Kazazi, “Hot-cured epoxy-nanoparticulate-filled nanocomposites: Fracture toughness behavior,” Eng. Fract. Mech., 162, 193-200 (2016).

    Article  Google Scholar 

  11. B. C. Kim, S. W. Park, and D. G. Lee, “Fracture toughness of the nano-particle reinforced epoxy composite,” Compos. Struct., 86, 1-3, 69-77 (2008).

    Article  Google Scholar 

  12. J. Cho, I. M. Daniel, and D. A. Dikin, “Effects of block copolymer dispersant and nanotube length on reinforcement of carbon/epoxy composites,” Compos. Part A, Appl. Sci. Manuf., 39, No. 12, 1844-1850 (2008).

    Article  CAS  Google Scholar 

  13. G. Gkikas, N. M. Barkoula, and A. S. Paipetis, “Effect of dispersion conditions on the thermo-mechanical and toughness properties of multi walled carbon nanotubes-reinforced epoxy,” Compos. Part B, Eng., 43, No. 16, 2697-2705 (2012).

    Article  CAS  Google Scholar 

  14. D. Quan, J. L. Urdániz, and A. Ivanković, “Enhancing mode-I and mode-II fracture toughness of epoxy and carbon fibre reinforced epoxy composites using multi-walled carbon nanotubes,” Mater. Des., 143, 81-92 (2018).

    Article  CAS  Google Scholar 

  15. Y. C. Shin, W. Il Lee, and H. S. Kim, “Mode II interlaminar fracture toughness of carbon nanotubes/epoxy film-interleaved carbon fiber composites,” Compos. Struct., 236, 111808, (2020)

    Article  Google Scholar 

  16. T. S. Gaaz, E. K. Hussein, K. A. Subhi, and A. Al-Amiery, “Mechanical and morphology properties of titanium oxideepoxy nanocomposites,” Int. J. Low-Carbon Technol., 16, No. 1, 240-245 (2020).

    Article  CAS  Google Scholar 

  17. M. Du, B. Guo, and D. Jia, “Newly emerging applications of halloysite nanotubes: a review,” Polym Int, 59, 574-582 (2010).

    Article  CAS  Google Scholar 

  18. M. Liu, Z. Jia, D. Jia, and C. Zhou, “Recent advance in research on halloysite nanotubes-polymer nanocomposite,” Progress in Polymer Science, 39, No. 8, 1498-1525, (2014).

    Article  CAS  Google Scholar 

  19. C. I. Idumah, A. Hassan, J. Ogbu, J. Ndem, and I. C. Nwuzor, “Recently emerging advancements in halloysite nanotubes polymer nanocomposites,” Compos. Interfaces, 1-74 (2018)

  20. C. Li, J. Liu, X. Qu, B. Guo, and Z. Yang, “Polymer-modified halloysite composite nanotubes,” Polym. Sci., 110, No. 6, 3638-3646 (2008)

    CAS  Google Scholar 

  21. Y. Ye, H. Chen, J. Wu, and L. Ye, “High impact strength epoxy nanocomposites with natural nanotubes,” Polymer (Guildf)., 48, No. 21, 6426-6433 (2007).

    Article  CAS  Google Scholar 

  22. T. S. Gaaz, A. B. Sulong, M. N. M. Ansari, A. A. H. Kadhum, A. A. Al-Amiery, and M. S. H. Al-Furjan, “Effect of halloysite nanotubes loading on thermo-mechanical and morphological properties of polyurethane nanocomposites,” Mater. Technol., 32, No. 7, 430-442 (2016).

    Article  CAS  Google Scholar 

  23. V. Vahedi, P. Pasbakhsh, and S. P. Chai, “Toward high performance epoxy/halloysite nanocomposites: New insights based on rheological, curing, and impact properties,” Mater. Des., 68, 42-53 (2015).

    Article  CAS  Google Scholar 

  24. Y. Tang, L. Ye, S. Deng, C. Yang, and W. Yuan, “Influences of processing methods and chemical treatments on fracture toughness of halloysite-epoxy composites,” Mater. Des., 42, 471-477 (2012).

    Article  CAS  Google Scholar 

  25. S. Deng, J. Zhang, L. Ye, and J. Wu, “Toughening epoxies with halloysite nanotubes,” Polymer (Guildf)., 49, No. 23, 5119-5127 (2008).

    Article  CAS  Google Scholar 

  26. T. Yokozeki, Y. Iwahori, and S. Ishiwata, “Matrix cracking behaviors in carbon fiber/epoxy laminates filled with cupstacked carbon nanotubes (CSCNTs),” Compos. Part A, Appl. Sci. Manuf., 38, No. 3, 917-924 (2007).

    Article  CAS  Google Scholar 

  27. M. Bashar, U. Sundararaj, and P. Mertiny, “Study of matrix micro-cracking in nano clay and acrylic tri-block-copolymer modified epoxy/basalt fiber-reinforced pressure-retaining structures,” Express Polym. Lett., 5, No. 10, 882-896 (2011).

    Article  CAS  Google Scholar 

  28. E. S. Rodríguez, V. G. Falchi, L. Asaro, I. A. Zucchi, and R. J. J. Williams, “Toughening an epoxy network by the addition of an acrylic triblock copolymer and halloysite nanotubes,” Compos. Commun., 12, 86-90 (2019).

    Article  Google Scholar 

  29. D. V. A. Ceretti, L. C. E. da Silva, M. do Carmo, Goncalves, and D. J. Carastan, “The role of dispersion technique and type of clay on the mechanical properties of clay/epoxy composites,” Macromol. Symp., 383, 1800055, 1-10 (2019).

  30. R. Rong, X. Xu, S. Zhu, B. Li, X. Wang, and K. Tang, “Facile preparation of homogeneous and length controllable halloysite nanotubes by ultrasonic scission and uniform viscosity centrifugation,” Chem. Eng. J., 291, 20-29 (2016).

    Article  CAS  Google Scholar 

  31. K. Mallick, “Ultralight linerless composite tanks for in-space applications in Space,” 2004 Conference and Exhibit AIAA 2004-5801. San Diego, California, United State (2004).

  32. J. Varna and L. Asp, “Microdamage in composite laminates: Experiments and observation,” Appl. Mech. Mater., 518, 84-89 (2014).

    Article  CAS  Google Scholar 

  33. Y. Ye, H. Chen, J. Wu, and C. M. Chan, “Evaluation on the thermal and mechanical properties of HNT-toughened epoxy/carbon fibre composites,” Compos. Part B Eng., 42, No. 8, 2145-2150 (2011).

    Article  CAS  Google Scholar 

  34. Y. Ye, H. Chen, J. Wu, and C. M. Chan, “Interlaminar properties of carbon fiber composites with halloysite nanotubetoughened epoxy matrix,” Compos. Sci. Technol., 71, No. 5, 717-723, (2011).

    Article  CAS  Google Scholar 

  35. M. il Kim, S. Kim, T. Kim, D. K. Lee, B. Seo, and C. S. Lim, “Mechanical and thermal properties of epoxy composites containing zirconium oxide impregnated halloysite nanotubes,” Coatings, 7, No. 12 (2017).

  36. Z. Li, L. Liu, A. J. Gonzalez, and D.-Y. Wang, “Bioinspired polydopamineinduced assembly of ultrafine Fe(OH)3 nanoparticles on halloysite toward highly efficient fire retardancy of epoxy resin via an action of interfacial catalysis,” Polym. Chem., 8, No. 26, 3926-3936, (2017).

    Article  CAS  Google Scholar 

  37. Y. Tang, S. Deng, L. Ye, C. Chang, Q. Yuan, J. Zhang, and C. Zhao, “Effects of unfolded and intercalated halloysites on mechanical properties of halloysite-epoxy nanocomposites,” Compos. Part A Appl. Sci. Manuf., 42, No. 4, 345-354 (2011).

    Article  CAS  Google Scholar 

  38. J. Zhang, D. Zhang, A. Zhang, Z. Jia, and D. Jia, “Dendritic polyamidoaminegrafted halloysite nanotubes for fabricating toughened epoxy composites,” Iran. Polym. J., 22, No. 7, 501-510 (2013).

    Article  CAS  Google Scholar 

  39. P. Sun, G. Liu, D. Lv, X. Dong, J. Wu, and D. Wang, “Simultaneous improvement in strength, toughness, and thermal stability of epoxy/halloysite nanotubes composites by interfacial modification,” J. Appl. Polym. Sci., 133, No. 13 (2016).

  40. P. Vijayan, A. Tanvir, M. Mrlik, M. Urbanek, and M. Al-Maadeed, “TiO2/Halloysite hybrid filler reinforced epoxy nanocomposites,” Polym. Compos., 39, S4 (2018).

    Article  CAS  Google Scholar 

  41. S. Zeng, C. Reyes, P. A. Rodgers, S. H. Wentworth, and L. Sun, “Facile hydroxylation of halloysite nanotubes for epoxy nanocomposite applications,” Polym. (United Kingdom), 55, No. 25, 6519-6528 (2014).

    CAS  Google Scholar 

  42. M. Sánchez, J. F. Uicich, G. F. Arenas, E. S. Rodríguez, P. E. Montemartini, and M. E. Penoff, “Chemical reactions affecting halloysite dispersion in epoxy nanocomposites,” J. Appl. Polym. Sci., 136, No. 38, 1-12 (2019).

    Article  CAS  Google Scholar 

  43. J. Hornak, P. Kadlec, and R. Polanský, “Halloysite nanotubes as an additive to ensure enhanced characteristics of coldcuring epoxy resins under fire conditions,” Polymers (Basel)., 12, No. 9, 1881 (2020).

  44. T. V. Brantseva, S. O. Ilyin, I. Y. Gorbunova, S. V. Antonov, Y. M. Korolev, and M. L. Kerber, “Epoxy reinforcement with silicate particles: Rheological and adhesive properties - Part II: Characterization of composites with halloysite,” Int. J. Adhes. Adhes., 68, 248-255 (2016).

    Article  CAS  Google Scholar 

  45. M. Khalina, M. H. Beheshty, and A. Salimi, “The effect of reactive diluent on mechanical properties and microstructure of epoxy resins,” Polym. Bull., 76, No. 8, 3905-3927 (2019).

    Article  CAS  Google Scholar 

  46. M. S. Z. Abidin, T. Herceg, E. S. Greenhalgh, M. Shaffer, and A. Bismarck, “Enhanced fracture toughness of hierarchical carbon nanotube reinforced carbon fibre epoxy composites with engineered matrix microstructure,” Compos. Sci. Technol., 170, 85-92 (2019).

    Article  CAS  Google Scholar 

  47. P. Cai, H. Zhang, D.-L. Zhao, and Z.-M. Shen, “Effect of diluent on mechanical properties of DDM/E-51 epoxy resin system,” Polym. Mater. Sci. Eng., 26, 75-77+82 (2010).

    Google Scholar 

  48. L. Kregl, G. M. Wallner, R. W. Lang, and G. Mayrhofer, “Effect of resin modifiers on the structural properties of epoxy resins,” J. Appl. Polym. Sci., 134, No. 44, 1-11 (2017).

    Article  CAS  Google Scholar 

  49. A. Sinha, N. I. Khan, S. Das, J. Zhang, and S. Halder, “Effect of reactive and non-reactive diluents on thermal and mechanical properties of epoxy resin,” High Perform. Polym., 30, No. 10, 1159-1168 (2018).

    Article  CAS  Google Scholar 

  50. G. Ravichandran, G. Rathnakar, N. Santhosh, R. Chennakeshava, and M. A. Hashmi, “Enhancement of mechanical properties of epoxy/halloysite nanotube (HNT) nanocomposites”, SN Appl. Sci., 1 (4), 296 (2019).

    Article  CAS  Google Scholar 

  51. T. S. Gaaz, A. B. Sulong, A. A. H. Kadhum, A. A. Al-Amiery, M. H. Nassir, and A. H. Jaaz, “The impact of halloysite on the thermo-mechanical properties of polymer composites,” Molecules, 22, No. 5, 13-15 (2017).

    Article  CAS  Google Scholar 

  52. M. J. Saif , M. Asif, M. Naveed, K. Zia, W. Zaman, M. Khosa, and M. Jamal, “Halloysite reinforced epoxy composites with improved mechanical properties”, Polish J. Chem. Technol., 18, No. 1, 133-135 (2016).

    Article  CAS  Google Scholar 

  53. V. Vahedi and P. Pasbakhsh, “Instrumented impact properties and fracture behaviour of epoxy/modified halloysite nanocomposites,” Polym. Test., 39, 101-114 (2014).

    Article  CAS  Google Scholar 

  54. M. S. Saharudin, R. Atif, S. Hasbi, M. N. A. Nazri, N. U. Saidin, and Y. Abdullah, “Synergistic effects of halloysite and carbon nanotubes (HNTs + CNTs) on the mechanical properties of epoxy nanocomposites,” AIMS Mater. Sci., 6, No. 6, 900-910 (2019).

    Article  CAS  Google Scholar 

  55. Y. He, Q. Chen, S. Yang, C. Lu, M. Feng Y. Jiang, G. Cao, J. Zhang, and C. Liu, “Micro-crack behavior of carbon fiber reinforced Fe3O4/graphene oxide modified epoxy composites for cryogenic application,” Compos. Part A Appl. Sci. Manuf., 108, 12-22 (2018).

    Article  CAS  Google Scholar 

  56. Z. Hashin, “Finite thermoelastic fracture criterion with application to laminate cracking analysis,” J. Mech. Phys. Solids, 44, No. 7, 1129-1145 (1996).

    Article  CAS  Google Scholar 

  57. M. W. Joosten, S. Agius, T. Hilditch, and C. Wang, “Effect of residual stress on the matrix fatigue cracking of rapidly cured epoxy/anhydride composites,” Compos. Part A, Appl. Sci. Manuf., 101, 521-528 (2017).

    Article  CAS  Google Scholar 

  58. L. A. Neely, V. Kochergin, E. M. See, H. D. Robinson, “Negative thermal expansion in a zirconium tungstate/epoxy composite at low temperatures,” J Mater Sci., 49, 392-396 (2014).

    Article  CAS  Google Scholar 

  59. K. Takenaka, “Progress of research in negative thermal expansion materials: paradigm shift in the control of thermal expansion,” Front Chem, 6, 267 (2018).

    Article  CAS  Google Scholar 

  60. J. Parameswaranpillai, A. George, J. Pionteck, and S. Thomas, “Investigation of cure reaction, rheology, volume shrinkage and thermomechanical properties of nano-TiO2 Filled Epoxy/DDS Composites,” Journal of Polymers, 2013, 183463 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors acknowledge the financial support of the University of Mar del Plata, the National Research Council (CONICET) and of the Agency for the Promotion of Science and Technology [FONARSEC - ANPCyT; PICT-2016-4048].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Rodríguez.

Additional information

Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 58, No. 2, pp. 411-428, March-April, 2022. Russian DOI: https://doi.org/10.22364/mkm.58.2.11.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Churruca, M.J., Morán, J.I. & Rodríguez, E.S. Effect of Halloysite Nanotubes on Matrix Microcracking in Carbon Fiber/Epoxy Composites. Mech Compos Mater 58, 293–304 (2022). https://doi.org/10.1007/s11029-022-10030-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-022-10030-5

Keywords

Navigation