Skip to main content
Log in

Predictive Analysis of the Influence of a Polypropylene-Talc Composite Layer on the Ring Stiffness of a Multilayer Plastic Pipe

  • Published:
Mechanics of Composite Materials Aims and scope

The ring stiffness of a multilayer sewage pipe reinforced with a composite polypropylene-talc layer, was investigated. The ring stiffnesses of plain and multilayer polypropylene pipes were determined experimentally and analyzed analytically. A finite-element model was developed to predict the ring stiffness of different multilayer pipe configurations as a function of layer thicknesses and talc content in the composite layer. The results obtained well agreed with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  1. T. Mori, T. Nonaka, K. Tazaki, M. Koga, Y. Hikosaka, and S. Noda, “Interactions of nutrients, moisture and pH on microbial corrosion of concrete sewer pipes,” Water Res., 26, No. 1, 29-37 (1992).

    Article  CAS  Google Scholar 

  2. L. Yuan and S. Kyriakides, “Liner wrinkling and collapse of bi-material pipe under axial compression,” Int. J. Solids Struct., 60-61, 48-59 (2015).

  3. S. Mu, H. Zhou, L. Shi, J. Liu, J. Cai, and F. Wang, “Research on performance and microstructure of sewage pipe mortar strengthened with different anti-corrosion technologies,” IOP Conf. Ser. Mater. Sci. Eng., 250, 012036 (2017).

    Article  Google Scholar 

  4. D. Ridgers, K. Rolf, and Ö. Stål, “Management and planning solutions to lack of resistance to root penetration by modern pvc and concrete sewer pipes,” Arboric. J., 29, No. 4, 269-290 (2006).

    Article  Google Scholar 

  5. M. Farshad and A. Necola, “Strain corrosion of glass fibre-reinforced plastics pipes,” Polym. Test., 23, No. 5, 517-521, (2004).

    Article  CAS  Google Scholar 

  6. F. W. Klaiber, R. A. Lohnes, and T. J. Wipf, Investigation of High-Density Polyethylene Pipe for Highway Applications, Final report: Phase I. Iowa DOT Project HR-373. ISU-ERI-AMES 96407, Iowa State University, College of Engineering, Department of Transportation, Iowa, USA (1996).

  7. T. Frank, “PE-HD spiral pipes for sewage pipelines–electrofusion socket welding up to DN 1800,” Proceedings of Plastics Pipes, 13 (2001).

  8. O. Chaallal, M. Arockiasamy, and A. Godat, “Laboratory tests to evaluate mechanical properties and performance of various flexible pipes,” J. Perform. Constr. Facil., 29, No. 5, 04014130 (2015).

  9. J. D. N. Martins, E. Freire, and H. Hemadipour, “Applications and market of PVC for piping industry,” Polímeros, 19, No. 1, 58-62 (2009).

  10. Y. Yuan, C. Liu, and M. Huang, “The structure and performance of short glass fiber/high-density polyethylene/polypropylene composite pipes extruded using a shearing–drawing compound stress field,” Materials, 12, No. 8, 1323, (2019).

  11. J. Poduška, P. Hutař, A. Frank, J. Kučera, J. Sadílek, G. Pinter, and L. Náhlík “Soil load on plastic pipe and its influence on lifetime,” J. Mech. Eng., 69, No. 3, 101-106 (2019).

    Google Scholar 

  12. N. Jansen, “Polypropylene: a tried and proven pipe material,” 3R international, 113-116 (1998).

  13. Brochure, Borouge. Polypropylene materials for non-pressure sewage and drainage systems URL:http://www.borouge.com/IndustrySolution/PDF%20Files/BorEco/2011%2012_Polypropylene%20materials%20for%20Non-Pressure%20Sewage%20Drainage%20Systems.pdf (accessed 28 august, 2019)

  14. J. Wassenaar, “Polypropylene materials for sewerage & drainage pipes with reduced energy and carbon footprints,” J. Mater. Sci. Eng. B, 6, No. 6, (2016).

  15. R. S. Hadal and R. D. K. Misra, “The influence of loading rate and concurrent microstructural evolution in micrometric talcand wollastonite-reinforced high isotactic polypropylene composites,” Mater. Sci. Eng. A, 374, No. 1-2, 374-389 (2004).

    Article  Google Scholar 

  16. Y. W. Leong, M. B. Abu Bakar, Z. A. Mohd. Ishak, A. Ariffin, and B. Pukanszky, “Comparison of the mechanical properties and interfacial interactions between talc, kaolin, and calcium carbonate filled polypropylene composites,” J. Appl. Polym. Sci., 91, No. 5, 3315-3326 (2004).

  17. S. Kant, Urmila, J. Kumar, and G. Pundir, “Study of talc filled polypropylene- a concept for improving mechanical properties of polypropylene,” Int. J. Res. Eng. Technol., 02, No. 04, 411-415 (2013).

  18. Y. Zhou, V. Rangari, H. Mahfuz, S. Jeelani, and P. K. Mallick, “Experimental study on thermal and mechanical behavior of polypropylene, talc/polypropylene and polypropylene/clay nanocomposites,” Mater. Sci. Eng. A, 402, No. 1-2, 109-117 (2005).

    Article  Google Scholar 

  19. S. Kobayashi, K. Suna, and T. Yasuda, “Mechanical properties and fracture behavior of nonwoven fabric reinforced plastics for rehabilitation of sewage pipes,” Adv. Compos. Mater., 21, No. 5-6, 413-423 (2012).

    Article  CAS  Google Scholar 

  20. L. Xu, G. Gao, X. Wang, J. Wang, and X. Chen, “A model to characterize the lateral expansion of a cylinder containing a polymer filler subjected to compression,” Mech. Adv. Mater. Struct. p. 9 (2010). https://doi.org/10.1082/15376494.2018.1545414

  21. P. Hutař, M. Zouhar, L. Náhlík, M. Ševčík, and B. Máša, “Multilayer polymer pipes failure assessment based on a fracture mechanics approach,” Eng. Fail. Anal., 33, 151-162 (2013).

    Article  Google Scholar 

  22. M. Farshad, “Determination of the long-term hydrostatic strength of multilayer pipes,” Polym. Test., 24, No. 8, 1041-1048 (2005).

    Article  CAS  Google Scholar 

  23. E. Nezbedová, L. Fiedler, Z. Majer, B. Vlach, and Z. Knésl, “Fracture toughness of multilayer pipes,” Strength Mater., 40, No. 1, 134-137 (2008).

    Article  Google Scholar 

  24. F. Arbeiter, M. Ševčík, G. Pinter, F. Andreas, and P. Hutař, “Polypropylene multi layer pipe lifetime assessment under realistic loading conditions,” (2014). https://doi.org/10.13140/RG.2.1.1162.2807

  25. O. A. González-Estrada, J. S. León, and A. Pertuz, “Influence of the boundary condition on the first ply failure and stress distribution on a multilayer composite pipe by the finite element method,” J. Phys. Conf. Ser., 1159, 012013 (2019).

    Article  Google Scholar 

  26. A. C. Seibi, I. Kalfat, A. Molki, T. Webb, and R. Flores, “Shape factor for glass-reinforced plastic pipes with noncircular shapes under diametral loading — an experimental study,” Exp. Tech., 39, No. 4, 64-69, (2015).

    Article  Google Scholar 

  27. J.-S. Park, W.-H. Hong, W. Lee, J.-H. Park, and S.-J. Yoon, “Pipe stiffness prediction of buried gfrp flexible pipe,” Polym. Polym. Compos., 22, No. 1, 17-24, (2014).

    CAS  Google Scholar 

  28. M. Farshad and A. Necola, “Effect of aqueous environment on the long-term behavior of glass fiber-reinforced plastic pipes,” Polym. Test., 23, No. 2, 163-167, (2004).

    Article  CAS  Google Scholar 

  29. J. H. Lee, S. H. Kim, W. C. Choi, and S. J. Yoon, “Pipe stiffness prediction of buried glass fiber reinforced polymer plastic (GFRP) and polymer mortar pipe,” Key Eng. Mater., 753, 3-7, (2017).

    Article  Google Scholar 

  30. N. K. Thomas, S. P. George, S. M. John, and S. P. George, “Stress analysis of underground GRP pipe subjected to internal and external loading conditions,” Int. J. Adv. Mech. Eng., 4, No. 4, 435-440 (2014).

    Google Scholar 

  31. K. Thornblom, S.F. Nilsson and S.E. Salberg, Durability of Non-Pressure Polypropylene Pipe Materials, SP Report 2007, Borealis AB. SP Technical Research Institute of Sweden; Goteborg (2007).

  32. Ł. Wierzbicki and M. Szymiczek, “Mechanical and chemical properties of sewage pipes,” Arch. Mater. Sci. Eng., 53, 38-45 (2012).

    Google Scholar 

  33. ISO 9969:2007 (E). Thermoplastics pipes — Determination of ring stiffness, Switzerland (2007)

  34. BS-EN-14758-1:2012. Plastics piping systems for non-pressure underground drainage and sewerage — Polypropylene with mineral modifiers (PP-MD) Part 1: Specifications for pipes, fittings and the system, London (2012).

  35. D20 Committee, ASTM D638. Test Method for Tensile Properties of Plastics, ASTM International. US (2014).

  36. F. Fuerle, J. Sienz, M. Innocente, J. F. T. Pittman, V. Samaras and S. Thomas, “Ring stiffness evaluation and optimization of structured- wall PE pipes,” 24th Annu. Meet., PPS-24, Italy (2008).

  37. Abaqus/CAE User’s Guide. Version 6.14. Dassault Systèmes Simulia Corp, Providence, RI.

  38. EN 1852-1:2009. Plastics piping systems for non-pressure underground drainage and sewerage - Polypropylene (PP) - Part 1: Specifications for pipes, fittings and the system, CEN, Brussels (2009).

Download references

Acknowledgements

The authors would like to thank the E3M research team within IUT-Saint Nazaire, France for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Challita.

Additional information

Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 57, No. 6, pp. 1065-1078, November-December, 2021. Russian DOI: 10.22364/mkm.57.6.03.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moussa, H.K., Challita, G., Yared, W. et al. Predictive Analysis of the Influence of a Polypropylene-Talc Composite Layer on the Ring Stiffness of a Multilayer Plastic Pipe. Mech Compos Mater 57, 749–758 (2022). https://doi.org/10.1007/s11029-022-09996-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-022-09996-z

Keywords

Navigation