Skip to main content
Log in

A Numerical and Experimental Study on the Impact Behavior of a Carbon-Fiber-Reinforced Thermoplastic Poly (Methyl Methacrylate) Composite

  • Published:
Mechanics of Composite Materials Aims and scope

The goal of the present study was to investigate the low-speed impact behavior and damage patterns of carbonfiber-reinforced methyl methacrylate composites. The process of low-speed impact damage in the composites was simulated using the finite-element method and verified experimentally. Orthotropic plane stress conditions of a homogenized lamina were used to model the composite structures. The evolution of damage was simulated, using the LS-DYNA finite-element code, by material models MAT58 based on the Matzenmiller damage mechanics model with four Hashin failure criteria and MAT54 based on four Chang-Chang failure criteria. The damage variables were determined calibrating the numerical model according to the experimental data of three-pointbending and impact tests. Detailed quantitative comparisons were carried out between the delaminated areas simulated by the model and those characterized experimentally by the ultrasonic C-Scan method. Results of the numerical analyses demonstrated their good agreement with experimental data in terms of contact force histories, peak forces, absorbed energy, and projected damage area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

References

  1. B. Falzon and W. Tan, “Predicting impact damage, residual strength and crashworthiness of composite structures,” SAE Int. J. Mater. Manf., 9, No. 3, 718-728 (2016).

    Article  Google Scholar 

  2. D. A. Berry, “Composite materials for orthotics and prosthetics,” Orthotics Prosthet, 40, No. 4, 35–43 (1986).

    Google Scholar 

  3. E. Caro-Osorio, R. De la Garza-Ramos, S. R. Martínez-Sánchez, and F. Olazarán-Salinas, “Cranioplasty with polymethylmethacrylate prostheses fabricated by hand using original bone flaps: Technical note and surgical outcomes,” Surg. Neurol. Int., 4, 136 (2013).

    Article  Google Scholar 

  4. C. Soutis and P. T. Curtis, “Prediction of the post-impact compressive strength of CFRP laminated composites,” Compos. Sci. Technol., 56, 677-684 (1996).

    Article  Google Scholar 

  5. S. Abrate, Impact on Composite Structures, Cambridge University Press, Cambridge (1998).

    Book  Google Scholar 

  6. S. W. Tsai and E. M. Wu, “A general theory of strength for anisotropic materials,” J. Compos Mater., 5, 58-80 (1971).

    Article  Google Scholar 

  7. Z. Hashin, “Failure criteria for unidirectional fibre composites,” J. Appl. Mech., 47, 329-334 (1980).

    Article  Google Scholar 

  8. L. J. Hart-Smith, “Predictions of the original and truncated maximum-strain failure models for certain fibrous composite laminates,” Compos. Sci. Technol., 58, 1151-1179 (1998).

    Article  Google Scholar 

  9. A. Rotem, “Prediction of laminate failure with the Rotem failure criterion,” Compos. Sci. Technol., 58, 1083-1094 (1998).

    Article  Google Scholar 

  10. P. Feraboli, B. Wade, F. Deleo, M. Rassaian, M. Higgins, and A. Byar, “LS-DYNA MAT54 modelling of the axial crushing of a composite tape sinusoidal specimen,” Compos. Pt. A-Appl. Sci. Manuf., 42, 1809-1825 (2011).

    Article  Google Scholar 

  11. J. O. Hallquist, LS-DYNA Theoretical Manual, Livermore Software Technology Corporation (2015).

  12. Y. S. Reddy and J. N. Reddy, “Three-dimensional finite element progressive failure analysis of composite laminates under axial compression,” J. Compos. Tech. Res., 15, No. 2, 73-87 (1993).

    Article  Google Scholar 

  13. S. B. Singh, A. Kumar, and N. G. R. Iyengar, “Progressive failure of symmetrically laminated plates under uni-axial compression,” Struct. Eng. Mech., 5, No. 4, 433-450 (1997).

    Article  Google Scholar 

  14. S. Huybrechts, A. Maji, J. Lao, P. Wegner, and T. Meink, “Validation of the quadratic composite failure criteria with out-of-plane shear terms,” J. Compos Mater., 36, No. 15, 1879-1888 (2002).

    Article  Google Scholar 

  15. R. Talreja, in A. S. D. Wang, and G. K. Haritos (eds), Damage Mechanics in Composites, ASME AD, Vol. 12 (1987), 11-16.

  16. F. K. Chang and K. Y. Chang, “A progressive damage model for laminated composites containing ctress concentrations,” J. Compos Mater., 21, No. 9, 834-855 (1987).

    Article  Google Scholar 

  17. P. Ladeveze and E. Le Dantec, “Damage modelling of the elementary ply for laminated composites,” Compos. Sci. Technol., 43, 257-267 (1992).

    Article  Google Scholar 

  18. I. Shahid and F.-K. Chang, “Accumulative damage model for tensile and shear failures of laminated composite plates,” J. Compos Mater., 29, No.7, 926-981 (1995).

    Article  Google Scholar 

  19. E. J. Barbero and P. Lonetti, “An inelastic damage model for fibre reinforced laminates,” J. Compos Mater., 36, No. 8, 941-962 (2002).

    Article  Google Scholar 

  20. A. Matzenmiller, J. Lubliner, and R. L. Taylor, “A constitutive model for anisotropic damage in fibre-composites,” Mech. Mater., 20, No. 2, 125-152 (1995).

    Article  Google Scholar 

  21. K. Schweizerhof, K. Weimer, Th. Münz, and Th. Rottner, “Crashworthiness analysis with enhanced composite material models in LS-DYNA – merits and limits,” in Proceedings of the 5th International LS-DYNA Users Conference, Southfield, MI, September 21-22 (1998).

  22. D. Feng and F. Aymerich, “Finite element modelling of damage induced by low-velocity impact on composite laminates,” Compos. Struct., 108, 161-171 (2014).

    Article  Google Scholar 

  23. J.P. Hou, N. Petrinic, C. Ruiz, and S.R. Hallett, “Prediction of impact damage in composite plates,” Compos. Sci. Technol., 60, 273-281 (2000).

    Article  Google Scholar 

  24. C.F. Li, N. Hu, Y.J. Yin, H. Sekine, and H. Fukunaga, “Low-velocity impact-induced damage of continuous fibrereinforced composite laminates. Part I. An FEM numerical model,” Composites: Part A, 33, 1055-1062 (2002).

    Article  Google Scholar 

  25. C.F. Li, N. Hu, J.G. Cheng, H. Fukunaga, and H. Sekine, “Low-velocity impact-induced damage of continuous fibre-reinforced composite laminates. Part II. Verification and numerical investigation”, Composites: Part A, 33, 1063-1072 (2002).

    Article  Google Scholar 

  26. D. Zeleniakiene, V. Leisis, and P. Griskevicius, “A numerical study to analyse the strength and stiffness of hollow cylindrical structures comprising sandwich fibre reinforced plastic composites,” J. Compos Mater., 49, 3515-3525 (2015).

    Article  Google Scholar 

  27. G. Marazas, V. Jankauskaite, D. Zeleniakiene, and D. Milasiene, “Stress distribution in soft polymer laminates,” Mater. Sci.-Medzg., 13, No. 1, 43-46 (2007).

    Google Scholar 

  28. D. Zeleniakienė, V. Leišis and P. Griškevičius, “Analytical model of laminar composites having fibre reinforced polyester faces and a polypropylene honeycomb core; experimental testing of the model,” P. Est. Acad. Sci., 61, No. 3, 245-251 (2012).

    Article  Google Scholar 

  29. D. Zeleniakiene, P. Griskevicius, V. Norvydas, A. Aniskevich, and K. Zukiene, “Simulation of mechanical behaviour of polychloroprene/versatic acid vinyl ester/methylmethacrylate/2-ethylhexyl acrylate copolymer blend,” Iran. Polym. J., 27, No. 2, 97-103 (2018).

    Article  Google Scholar 

  30. J. Wang, “Prediction of post-impact compressive strength of composite laminates using an inhomogeneity model,” J. Compos. Mater., 33, No. 24, 2226-2247 (1999).

    Article  Google Scholar 

  31. K. Zukiene, E. Zukauskas, R. J. Kazys, D. Zeleniakiene, and V. Jankauskaite, “Structure – impact properties relationships of carbon fibre reinforced poly(methyl methacrylate) composite,” Polym. Compos., 40, E333-E341 (2019).

    Article  Google Scholar 

  32. A. K. Kaw, Mechanics of Composite Materials, CRC Press, Taylor & Francis Group (2006).

  33. M. V. Zhikharev and S. B. Sapozhnikov, “Two-scale modelling of high-velocity fragment GFRP penetration for assessment of ballistic limit,” Int. J. Impact Eng., 101, 42-48 (2017).

    Article  Google Scholar 

  34. S. P. Rajbhandari, M. L. Scott, R. S. Thomson, and D. Hachenberg, “An approach to modelling and predicting impact damage in composite structures,” 23rd Congr. of Int. Council of the Aeronautical Sciences, 8-13 September, 2002, Toronto, Canada, Paper ICAS 2002-8.6.2, 1-10.

Download references

Acknowledgment

The research was partially funded by M-era.Net project “NANO2COM - Adavanced Polymer Composites Filled with Novel 2D Nanoparticles,” grants No. S-M-ERA.NET-18-1 of the Research Council of Lithuania, No. 1.1.1.5/ERANET/18/02 of the Latvian State Education Development Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Zeleniakiene.

Additional information

Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 55, No. 3, pp. 565-582, May-June, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeleniakiene, D., Griskevicius, P., Aniskevich, A. et al. A Numerical and Experimental Study on the Impact Behavior of a Carbon-Fiber-Reinforced Thermoplastic Poly (Methyl Methacrylate) Composite. Mech Compos Mater 55, 393–404 (2019). https://doi.org/10.1007/s11029-019-09820-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-019-09820-1

Keywords

Navigation