Mechanics of Composite Materials

, Volume 55, Issue 3, pp 393–404 | Cite as

A Numerical and Experimental Study on the Impact Behavior of a Carbon-Fiber-Reinforced Thermoplastic Poly (Methyl Methacrylate) Composite

  • D. ZeleniakieneEmail author
  • P. Griskevicius
  • A. Aniskevich
  • V. Jankauskaite
  • K. Zukiene

The goal of the present study was to investigate the low-speed impact behavior and damage patterns of carbonfiber-reinforced methyl methacrylate composites. The process of low-speed impact damage in the composites was simulated using the finite-element method and verified experimentally. Orthotropic plane stress conditions of a homogenized lamina were used to model the composite structures. The evolution of damage was simulated, using the LS-DYNA finite-element code, by material models MAT58 based on the Matzenmiller damage mechanics model with four Hashin failure criteria and MAT54 based on four Chang-Chang failure criteria. The damage variables were determined calibrating the numerical model according to the experimental data of three-pointbending and impact tests. Detailed quantitative comparisons were carried out between the delaminated areas simulated by the model and those characterized experimentally by the ultrasonic C-Scan method. Results of the numerical analyses demonstrated their good agreement with experimental data in terms of contact force histories, peak forces, absorbed energy, and projected damage area.


carbon-fiber-reinforced composite numerical modeling impact behavior damage 



The research was partially funded by M-era.Net project “NANO2COM - Adavanced Polymer Composites Filled with Novel 2D Nanoparticles,” grants No. S-M-ERA.NET-18-1 of the Research Council of Lithuania, No. of the Latvian State Education Development Agency.


  1. 1.
    B. Falzon and W. Tan, “Predicting impact damage, residual strength and crashworthiness of composite structures,” SAE Int. J. Mater. Manf., 9, No. 3, 718-728 (2016).CrossRefGoogle Scholar
  2. 2.
    D. A. Berry, “Composite materials for orthotics and prosthetics,” Orthotics Prosthet, 40, No. 4, 35–43 (1986).Google Scholar
  3. 3.
    E. Caro-Osorio, R. De la Garza-Ramos, S. R. Martínez-Sánchez, and F. Olazarán-Salinas, “Cranioplasty with polymethylmethacrylate prostheses fabricated by hand using original bone flaps: Technical note and surgical outcomes,” Surg. Neurol. Int., 4, 136 (2013).CrossRefGoogle Scholar
  4. 4.
    C. Soutis and P. T. Curtis, “Prediction of the post-impact compressive strength of CFRP laminated composites,” Compos. Sci. Technol., 56, 677-684 (1996).CrossRefGoogle Scholar
  5. 5.
    S. Abrate, Impact on Composite Structures, Cambridge University Press, Cambridge (1998).CrossRefGoogle Scholar
  6. 6.
    S. W. Tsai and E. M. Wu, “A general theory of strength for anisotropic materials,” J. Compos Mater., 5, 58-80 (1971).CrossRefGoogle Scholar
  7. 7.
    Z. Hashin, “Failure criteria for unidirectional fibre composites,” J. Appl. Mech., 47, 329-334 (1980).CrossRefGoogle Scholar
  8. 8.
    L. J. Hart-Smith, “Predictions of the original and truncated maximum-strain failure models for certain fibrous composite laminates,” Compos. Sci. Technol., 58, 1151-1179 (1998).CrossRefGoogle Scholar
  9. 9.
    A. Rotem, “Prediction of laminate failure with the Rotem failure criterion,” Compos. Sci. Technol., 58, 1083-1094 (1998).CrossRefGoogle Scholar
  10. 10.
    P. Feraboli, B. Wade, F. Deleo, M. Rassaian, M. Higgins, and A. Byar, “LS-DYNA MAT54 modelling of the axial crushing of a composite tape sinusoidal specimen,” Compos. Pt. A-Appl. Sci. Manuf., 42, 1809-1825 (2011).CrossRefGoogle Scholar
  11. 11.
    J. O. Hallquist, LS-DYNA Theoretical Manual, Livermore Software Technology Corporation (2015).Google Scholar
  12. 12.
    Y. S. Reddy and J. N. Reddy, “Three-dimensional finite element progressive failure analysis of composite laminates under axial compression,” J. Compos. Tech. Res., 15, No. 2, 73-87 (1993).CrossRefGoogle Scholar
  13. 13.
    S. B. Singh, A. Kumar, and N. G. R. Iyengar, “Progressive failure of symmetrically laminated plates under uni-axial compression,” Struct. Eng. Mech., 5, No. 4, 433-450 (1997).CrossRefGoogle Scholar
  14. 14.
    S. Huybrechts, A. Maji, J. Lao, P. Wegner, and T. Meink, “Validation of the quadratic composite failure criteria with out-of-plane shear terms,” J. Compos Mater., 36, No. 15, 1879-1888 (2002).CrossRefGoogle Scholar
  15. 15.
    R. Talreja, in A. S. D. Wang, and G. K. Haritos (eds), Damage Mechanics in Composites, ASME AD, Vol. 12 (1987), 11-16.Google Scholar
  16. 16.
    F. K. Chang and K. Y. Chang, “A progressive damage model for laminated composites containing ctress concentrations,” J. Compos Mater., 21, No. 9, 834-855 (1987).CrossRefGoogle Scholar
  17. 17.
    P. Ladeveze and E. Le Dantec, “Damage modelling of the elementary ply for laminated composites,” Compos. Sci. Technol., 43, 257-267 (1992).CrossRefGoogle Scholar
  18. 18.
    I. Shahid and F.-K. Chang, “Accumulative damage model for tensile and shear failures of laminated composite plates,” J. Compos Mater., 29, No.7, 926-981 (1995).CrossRefGoogle Scholar
  19. 19.
    E. J. Barbero and P. Lonetti, “An inelastic damage model for fibre reinforced laminates,” J. Compos Mater., 36, No. 8, 941-962 (2002).CrossRefGoogle Scholar
  20. 20.
    A. Matzenmiller, J. Lubliner, and R. L. Taylor, “A constitutive model for anisotropic damage in fibre-composites,” Mech. Mater., 20, No. 2, 125-152 (1995).CrossRefGoogle Scholar
  21. 21.
    K. Schweizerhof, K. Weimer, Th. Münz, and Th. Rottner, “Crashworthiness analysis with enhanced composite material models in LS-DYNA – merits and limits,” in Proceedings of the 5th International LS-DYNA Users Conference, Southfield, MI, September 21-22 (1998).Google Scholar
  22. 22.
    D. Feng and F. Aymerich, “Finite element modelling of damage induced by low-velocity impact on composite laminates,” Compos. Struct., 108, 161-171 (2014).CrossRefGoogle Scholar
  23. 23.
    J.P. Hou, N. Petrinic, C. Ruiz, and S.R. Hallett, “Prediction of impact damage in composite plates,” Compos. Sci. Technol., 60, 273-281 (2000).CrossRefGoogle Scholar
  24. 24.
    C.F. Li, N. Hu, Y.J. Yin, H. Sekine, and H. Fukunaga, “Low-velocity impact-induced damage of continuous fibrereinforced composite laminates. Part I. An FEM numerical model,” Composites: Part A, 33, 1055-1062 (2002).CrossRefGoogle Scholar
  25. 25.
    C.F. Li, N. Hu, J.G. Cheng, H. Fukunaga, and H. Sekine, “Low-velocity impact-induced damage of continuous fibre-reinforced composite laminates. Part II. Verification and numerical investigation”, Composites: Part A, 33, 1063-1072 (2002).CrossRefGoogle Scholar
  26. 26.
    D. Zeleniakiene, V. Leisis, and P. Griskevicius, “A numerical study to analyse the strength and stiffness of hollow cylindrical structures comprising sandwich fibre reinforced plastic composites,” J. Compos Mater., 49, 3515-3525 (2015).CrossRefGoogle Scholar
  27. 27.
    G. Marazas, V. Jankauskaite, D. Zeleniakiene, and D. Milasiene, “Stress distribution in soft polymer laminates,” Mater. Sci.-Medzg., 13, No. 1, 43-46 (2007).Google Scholar
  28. 28.
    D. Zeleniakienė, V. Leišis and P. Griškevičius, “Analytical model of laminar composites having fibre reinforced polyester faces and a polypropylene honeycomb core; experimental testing of the model,” P. Est. Acad. Sci., 61, No. 3, 245-251 (2012).CrossRefGoogle Scholar
  29. 29.
    D. Zeleniakiene, P. Griskevicius, V. Norvydas, A. Aniskevich, and K. Zukiene, “Simulation of mechanical behaviour of polychloroprene/versatic acid vinyl ester/methylmethacrylate/2-ethylhexyl acrylate copolymer blend,” Iran. Polym. J., 27, No. 2, 97-103 (2018).CrossRefGoogle Scholar
  30. 30.
    J. Wang, “Prediction of post-impact compressive strength of composite laminates using an inhomogeneity model,” J. Compos. Mater., 33, No. 24, 2226-2247 (1999).CrossRefGoogle Scholar
  31. 31.
    K. Zukiene, E. Zukauskas, R. J. Kazys, D. Zeleniakiene, and V. Jankauskaite, “Structure – impact properties relationships of carbon fibre reinforced poly(methyl methacrylate) composite,” Polym. Compos., 40, E333-E341 (2019).CrossRefGoogle Scholar
  32. 32.
    A. K. Kaw, Mechanics of Composite Materials, CRC Press, Taylor & Francis Group (2006).Google Scholar
  33. 33.
    M. V. Zhikharev and S. B. Sapozhnikov, “Two-scale modelling of high-velocity fragment GFRP penetration for assessment of ballistic limit,” Int. J. Impact Eng., 101, 42-48 (2017).CrossRefGoogle Scholar
  34. 34.
    S. P. Rajbhandari, M. L. Scott, R. S. Thomson, and D. Hachenberg, “An approach to modelling and predicting impact damage in composite structures,” 23rd Congr. of Int. Council of the Aeronautical Sciences, 8-13 September, 2002, Toronto, Canada, Paper ICAS 2002-8.6.2, 1-10.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • D. Zeleniakiene
    • 1
    Email author
  • P. Griskevicius
    • 1
  • A. Aniskevich
    • 2
  • V. Jankauskaite
    • 3
  • K. Zukiene
    • 3
  1. 1.Department of Mechanical EngineeringKaunas University of TechnologyKaunasLithuania
  2. 2.Institute for Mechanics of MaterialsUniversity of LatviaRigaLatvia
  3. 3.Department of Production EngineeringKaunas University of TechnologyKaunasLithuania

Personalised recommendations