Skip to main content
Log in

Parameter Optimization of Laminated Multiferroic Composites

  • Published:
Mechanics of Composite Materials Aims and scope

The voltage coefficient of a multiferroic laminated composite consisting of magnetostrictive and piezoelectric phases is minimized by optimization of physical parameters of the magnetostrictive material. Two optimization schemes are considered: maximization over a discrete set of values, including parameters of several known materials, and over a continuous domain constrained by the minimal and maximal elements of the discrete set. It is shown that there exist several possible combinations of parameters at which the value of the voltage coefficient is higher than that for known homogeneous materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. C.-W. Nan, M. I. Bichurin, S. Dong, D. Viehland, and G. Srinivasan, “Multiferroic magnetoelectric composites: Historical perspective, status, and future directions,” J. Appl. Phys., 103, 031101 (2008).

    Article  Google Scholar 

  2. A. P. Pyatakov, A. K. Zvezdin, “Magnetoelectric and multiferroic media,” Uspekhi Fizicheskikh Nauk, 55, 557-581 (2012).

    Article  Google Scholar 

  3. I. A. Osaretin, R. G. Rojas, “Theoretical model for the magnetoelectric effect in magnetostrictive/piezoelectric composites,” Phys. Rev. B, 82, 174415 (2010).

    Article  Google Scholar 

  4. Y. Wang, D. Hasanyan, M. Li, J. Gao, J. Li, D. Viehland, and H. Luo, J., “Theoretical model for geometry-dependent magnetoelectric effect in magnetostrictive/piezoelectric composites,” Appl. Phys., 111, 124513 (2012)

  5. J. van Suchtelen, “Product properties: A new application of composite materials,” Philips Res. Rep., 27, 28-37 (1972).

    Google Scholar 

  6. D. A. Filippov, “Theory of magnetoelectric effect in ferromagnetic-piezoelectric bilayer structures,” Tech. Phys. Lett., 30, 983-986 (2004).

    Article  Google Scholar 

  7. D. A. Filippov, “Theory of the magnetoelectric effect in ferromagnetic-piezoelectric heterostructures,” Phys. Solid State, 47, 1118-1121 (2005).

    Article  Google Scholar 

  8. D. A. Filippov, V. M. Laletin, and T. A. Galichyan, “Magnetoelectric effect in a magnetostrictive-piezoelectric bilayer structure,” Phys. Solid State, 55, 1840-1845 (2013).

    Article  Google Scholar 

  9. D. A. Filippov, T. A. Galichyan, and V. M. Laletin, “Magnetoelectric effect in bilayer magnetostrictive-piezoelectric structure. Theory and experiment,” Appl. Phys. A, 115, 1087-1091 (2014).

    Article  Google Scholar 

  10. A. G. Olabi and A. Grunwald, “Design and application of magnetostrictive materials,” Materials & Design, 29, 469-483 (2008).

    Article  Google Scholar 

  11. F.-X. Irisarri, D. H. Bassir, N. Carrere, and J.-F. Maire, “Multiobjective stacking sequence optimization for laminated composite structures,” Compos. Sci. Technol. 69, 983-990 (2009).

    Article  Google Scholar 

  12. J. Majak and M. Pohlak, “Decomposition method for solving optimal material orientation problems,” Compos. Struct., 92, 1839-1845 (2010).

    Article  Google Scholar 

  13. J. Šliseris and K. Rocēns “Optimization of multispan ribbed plywood plate macrostructure for multiple load cases,” 19, 696-704 (2013).

  14. Hybrid Materials: Synthesis, Characterization, and Applications, ed. G. Kickelbick, Wiley-VCH Verlag, Weinheim.

  15. M. A. R. Loja, C. M. Mota Soares, and J. I. Barbosa, “Optimization of magneto-electro-elastic composite structures using differential evolution,” Compos. Struct., 107, 276-287 (2014).

    Article  Google Scholar 

  16. S. Czarnecki and T. Lewinski, “On material design by the optimal choice of Young’s modulus distribution,” Int. J. Sol. Struct., 110-111, 315-331 (2017).

    Article  Google Scholar 

  17. A. Muc, “Choice of design variables in the stacking sequence optimization for laminated structures,” Mech. Compos. Mater., 52, No. 2. 211-224 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to As. Zh. Khurshudyan.

Additional information

Translated from Mekhanika Kompozitnykh Materialov, Vol. 55, No. 2, pp. 303-312, March-April, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galichyan, T.A., Khurshudyan, A.Z. & Filippov, D.A. Parameter Optimization of Laminated Multiferroic Composites. Mech Compos Mater 55, 211–218 (2019). https://doi.org/10.1007/s11029-019-09804-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-019-09804-1

Keywords

Navigation