Skip to main content
Log in

Identification of Mechanical Characteristics of a Nonlinear-Viscoelastic Composite by Results of Tests on Shells of Revolution

  • Published:
Mechanics of Composite Materials Aims and scope

The problem on identification of rheological properties of nonlinear viscoelastic composites is considered on the basis of a comparative analysis of calculations and test data for a layered shell of revolution at various instants of time. Results obtained for a organoplastic and polyvinylchloride by analyzing data of natural experiments are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. I. G. Teregulov, R. A. Kayumov, and D. H. Safiullin, “Modeling the work of shells made of a nonlinearly viscoelastic composite material,” Tr. Mezhdunar. Konf. Theori obolochek i Plastin. 3, N. Novgorod, 227-235 (1994).

  2. K. Giannadakis, P. Mannberg, R. Joffe, and J. Varna, “The sources of inelastic behavior of glass fibre/vinylester non-crimp fabric [±45]s laminates,” J. Reinf. Plastics and Compos., 30, No.12, 1015-1028 (2011).

    Article  Google Scholar 

  3. B. Diveyev, I. Dutiter, and N. Shcherbina, “Identifying the elastic moduli of composite plates by using high-order theories. 2. Theoretical-experimental approach,” Mech. Compos. Mater., 44, No. 2, 207-216 (2008).

    Article  Google Scholar 

  4. K. Giannadakis and J. Varna, “Analysis of nonlinear shear stress-strain response of unidirectional GF/EP composite,” Composites: Part A., No. 62, 67-76 (2014).

  5. L.-O. Nordin and J. Varna, “Methodology for parameter identification in nonlinear viscoelastic material model,” 9, No. 4, 259-280 (2005). DOI: https://doi.org/10.1007/s11043-005-9000-z

  6. R. A. Kayumov, R. O. Nezhdanov, and B. F. Tazyukov, “Determining the Characteristics of Fibrous Composite Materials by Identification Methods [in Russian], Kazan, Izd. KGU (2005).

  7. R. A. Kayumov, “Extended identification problem of mechanical characteristics of materials by results of tests on structures,” Izv. RAN, Mekh. Tverd. Tela, No. 2, 94-105 (2004).

  8. N. N. Malinin, “Applied Theory of Plasticity and Creep. Textbook for Students of VUZs [I Russian], M., Mashinostroenie (1975).

  9. K. P. Alekseev, R. A. Kayumov, I. Z. Mukhamedova, and I. G. Teregulov, “Experimental investigation of creep of composite materials on tubular organoplastic samples,” Mekh. Kompoz. Mat. Konstr., 10, No. 2, 199-210 (2004).

    Google Scholar 

  10. A. R. Rzhanitsyn, Theory of Creep [in Russian], M., Stroyizdat (1968).

  11. M. A. Koltunov, Creep and Relaxation [in Russian], M., Vysshaya Shkola (1976).

  12. Н. Kh. Arutyunyan, “On the theory of creep for nonuniform hereditarily egeing media,”Dokl. AN SSSR, 229, No. 3, 569-571 (1976).

    Google Scholar 

  13. V. N. Paimushin, V. A. Firsov, I. Gyunal, A. G. Egorov, and R. A. Kayumov, “Theoretical-experimental method for determining the parameters of damping based on the study of damped flexural vibrations of tests specimens. 3 Identification of the characteristics of internal damping,” Mech. Compos.. Mater., 50, No. 5, 633-647 (2014).

    Article  Google Scholar 

  14. R. A. Kayumov and I. G. Teregulov, “Structure of constitutive relations for hereditarily elastic materials reinforced with rigid fibers,” Zhurn.PMTF No.3, 120-128 (2005).

  15. I. F. Obraztsov, L. M. Savelyev, and Kh. S. Khazanov, “Metod of Finite Elements in Problems of Structural Mechanics of Flying Devices [in Russian], M., Vysshaya Shkola (1985).

  16. D. Cerpakovska and M. Kalnins, “Composites based on cellulose fiber nonwovens a water-soluble polymer 2. Strength-deformation characteristics of the composites,” Mech. Compos. Mater. 48, No. 4, 483-486 (2012). https://www.scopus.com/sourceid/13614?origin=recordpage

  17. V. N. Paimushin, I. M. Zakirov, S. A. Lukankin, and I. I. Zakirov, “Computational-experimental method to determine the averaged elastic and strength characteristics of fillers of multilayered structures in shear,” Mech. Compos. Mater., 48, No. 4, 355-368 (2012). <https://www.scopus.com/sourceid/13614?origin=recordpage>

  18. K. P. Alexey, R. A. Kajumov, I. G. Teregulov, and I. Kh. Fakhrutdinov, “Mechanical characteristic organo- anad carbonplastic pipes made by the method of cross-ply winding,” Mekh. Kompozit. Mater. Konstr., 4, No. 4, 3-20 (1998).

    Google Scholar 

Download references

Acknowledgment

Results of the research have been obtained within the framework of performance of the State task of Ministry of Education and Science of Russia No. 9.5762.2017/VU, project No. 9.1395.2017/Pch, owing to the subsidy allocated to the Kazan Federal University for performance of the State task in sphere of scientific activity (project No. 1.13556.2019/13.1), and at a support of the Russian fund for basic research (project No. 19-08-00349).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Kayumov.

Additional information

Translated from Mekhanika Kompozitnykh Materialov, Vol. 55, No. 2, pp. 247-258, March-April, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kayumov, R.A., Tazyukov, B.F. & Mukhamedova, I.Z. Identification of Mechanical Characteristics of a Nonlinear-Viscoelastic Composite by Results of Tests on Shells of Revolution. Mech Compos Mater 55, 171–180 (2019). https://doi.org/10.1007/s11029-019-09802-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-019-09802-3

Keywords

Navigation