Skip to main content

Advertisement

Log in

Crashworthiness Experiment and Simulation Analysis of Composite Thin-Walled Circular Tubes Under Axial Crushing

  • Published:
Mechanics of Composite Materials Aims and scope

To reveal the energy absorbing mechanism of thin-walled circular tubes made of a T700/3234 composite, tests were first conducted to find its material properties, and then quasi-static axial crushing tests were performed to determine the failure modes and were measured by material performance tests, and the damage mechanism and energy absorption characteristics of the tubes. The effects of the mechanism and ply orientations on the failure modes and energy absorption characteristics were further analyzed. Stacked shell finite-element models are developed using the Puck2000 and Yamada Sun failure criteria and are verified by comparing simulation results with test data. The calculated initial peak crushing and mean crushing forces and the specific energy absorption agreed well with test data. The effect of layer sequence on the energy absorption characteristics of the composite circular tubes are compared on the basis of verified finite-element models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  1. A. Abramowitz, T. G. Smith, T. Vu, and J. Zvanya, “Vertical drop test of a narrow-body transport fuselage section with overhead stowage bins,” DOT/FAA/AR-01/100 (2002).

  2. K. E. Jackson and E. L. Fasanella, “Crash simulation of vertical drop tests of two Boeing 737 fuselage sections,” DOT/FAA/AR-02/62 (2002).

  3. K. E. Jackson and E. L. Fasanella, “Development and validation of a finite element simulation of a vertical drop test of an ATR 42 regional transport airplane,” DOT/FAA/AR-08/19 (2008).

  4. Z. Y. Feng, H. L. Mou, T. C. Zou, and J. REN, “Research on effects of composite skin on crashworthiness of composite fuselage section,” Int. J. Crashworth., 18, No. 5, 459-464 (2013).

    Article  Google Scholar 

  5. M. Waimer, D. Kohlgruber, D. Hachenberg, and H. Voggenreiter, “Experimental study of CFRP components subjected to dynamic crash loads,” Compos. Struct., 105, 288-299 (2013).

    Article  Google Scholar 

  6. D. Delsart, G. Portemont, and M. Waimer, “Crash testing of a CFRP commercial aircraft sub-cargo fuselage section,” 21st European Conference on Fracture, 20-24 June, Catania, Italy, 2198-2205 (2016).

  7. D. Siromani, G. Henderson, D. Mikita, K. Mirarchi, R. Park, J. Smolko, J. Awerbuch, and T. M. Tan, “An experimental study on the effect of failure chamfer mechanisms on the energy absorption capability of CFRP tubes under axial compression”, Composites: Part A, 64, 25-35 (2014).

    Article  Google Scholar 

  8. J. Meredith, E. Bilson, R. Powe, E. Collings, and K. Kirwan, “A performance versus cost analysis of prepreg carbon fibre epoxy energy absorption structures,” Compos. Struct., 124, 206-213 (2015).

    Article  Google Scholar 

  9. B. Ostré, C. Bouvet, C. Minot, and J. Aboissière, “Experimental analysis of CFRP laminates subjected to compression after edge impact,” Compos. Struct., 152, 767-778 (2016).

    Article  Google Scholar 

  10. A. Jackson, S. Dutton, A. J. Gunnion, and D. Kelly, “Investigation into laminate design of open carbon-fibre/epoxy sections by quasi-static and dynamic crushing,” Compos. Struct., 93, 2646-2654 (2011).

    Article  Google Scholar 

  11. P. Feraboli, “Development of a corrugated test specimen for composite materials energy absorption,” J. Compos. Mater., 42, 229-256 (2008).

    Article  Google Scholar 

  12. S. Palanivelu, W. V. Paepegem, J. Degrieck, D. Kakogiannis, J. V. Ackeren, D. V. Hemelrijck, J. Wastiels, and J. Vantomme, “Comparative study of the quasi-static energy absorption of small-scale composite tubes with different geometrical shapes for use in sacrificial cladding structures,” Polym. Test., 29, 381-396 (2010).

    Article  Google Scholar 

  13. R. A. Damodar and R. Marshall, “Design and evaluation of composite fuselage panels subjected to combined loading conditions,” J. Aircraft, 42, No. 4, 1037-1045 (2005).

    Article  Google Scholar 

  14. S. Heimbs, M. Hoffmann, M. Waimer, S. Schmeer, and J. Blaurock, “Dynamic testing and modelling of composite fuselage frames and fasteners for aircraft crash simulations,” Int. J. Crashworth., 18, No. 4, 406-422 (2013).

    Article  Google Scholar 

  15. D. Siromani, J. Awerbuch, and T. M. Tan, “Finite element modeling of the crushing behavior of thin-walled CFRP tubes under axial compression,” Composites: Part B, 64, 50-58 (2014).

    Article  Google Scholar 

  16. E. Mahdi and T. A. Sebaey, “An experimental investigation into crushing behavior of radially stiffened GFRP composite tubes,” Thin-Walled Struct., 76, 8-13 (2014).

    Article  Google Scholar 

  17. H. Bohm, D. Weck, A. Langkamp, F. Adam, and M. Gude, “Experimental and numerical study on the axial crushing behavior of textile-reinforced thermoplastic composite tubes,” Adv. Eng. Mater., 18, No. 3, 437-443 (2016).

    Article  Google Scholar 

  18. S. Palanivelu, W. V. Paepegem, J. Degrieck, D. Kakogiannis, J. V. Ackeren, D. V. Hemelrijck, J. Wastiels, and J. Vantomme, “Parametric study of crushing parameters and failure patterns of pultruded composite tubes using cohesive elements and seam, Part I: Central delamination and chamfering modelling,” Polym. Test., 29, 729-741 (2010).

    Article  Google Scholar 

  19. C. Mcgregor, R. Vaziri, and X. Xiao, “Finite element modelling of the progressive crushing of braided composite tubes under axial impact,” Int. J. Impact Eng., 37, 662-672 (2010).

    Article  Google Scholar 

  20. X. Xiao, “Modeling energy absorption with a damage mechanics based composite material model,” J. Compos. Mater., 43, 427-444 (2009).

    Article  Google Scholar 

  21. B. P. Bussadori, K. Schuffenhauer, and A. Scattina, “Modelling of CFRP crushing structures in explicit crash analysis,” Composites: Part B, 60, No. 1, 725-735 (2014).

    Article  Google Scholar 

  22. H. L. Mou, T. C. Zou, Z. Y. Feng, and J. Xie, “Crashworthiness analysis and evaluation of fuselage section with subfloor composite sinusoidal specimens,” Latin American J. Solids and Struct., 13, No. 6, 1186-1202 (2016).

    Article  Google Scholar 

  23. J. S. Lin, X. Wang, C. Q. Fang, and X. Huang, “Collapse loading and energy absorption of fiber-reinforced conical shells,” Composites: Part B, 74, 178-189 (2015).

    Article  Google Scholar 

  24. L. W. Ying, F. P. Yang, and X. Wang, “Analytical method for the axial crushing force of fiber-reinforced tapered square metal tubes,” Compos. Struct., 153, 222-233 (2016).

    Article  Google Scholar 

  25. H. Ei-hage, P. K. Mallick, and N. Zamani, “A numerical study on the quasi-static crush characteristics of square aluminum-composite hybrid tubes,” Compos. Struct., 73, No. 4, 505-514 (2006).

    Article  Google Scholar 

  26. L. Wang, W. Q. Liu, Y. Fang. L. Wan, and R. L. Huo, “Axial crush behavior and energy absorption capability of foam-filled GFRP tubes manufactured through vacuum assisted resin infusion process,” Thin-Walled Struct., 98, 263-273 (2016).

    Article  Google Scholar 

  27. J. Sliseris, L. Yan, and B. Kasal, “Numerical simulation and experimental verification of hollow and foam-filled flaxfabric-reinforced epoxy tubular energy absorbers subjected to crashing,” Mech. Compos. Mater., 53, No. 4, 695-710 (2017).

    Article  Google Scholar 

  28. Y. L. Lin, Z. F. Zhang, R. Chen, Y. Li, X. J. Wen, and F. Y. Lu, “Cushioning and energy absorbing property of combined aluminum honeycomb,” Adv. Eng. Mater., 17, No. 10, 1434-1441 (2015).

    Article  Google Scholar 

  29. G. L. Farley, “Crash energy absorbing composite sub-floor structure,” AIAA/ASME/ASCE /AHS 27th Structures, Structural Dynamics and Materials Conf., (1986).

  30. C. M. Kindervater, “Energy absorption of composites as an aspect of aircraft structural crash-resistance,” Developments in the Science and Technology of Composite Materials, Springer Netherlands, Berlin, Germany, 643~651 (1990).

  31. M. David, “Experimental and numerical investigation of polymer composite energy absorbers under dynamic loading,” DLR Deutsches Zentrum fur Luft- und Raumfahrt e.V. - Forschungsberichte, 4, 1-133 (2015).

    Google Scholar 

  32. G. L. Farley and R. M. Jones, “Crushing characteristics of continuous fiber-reinforced composite tubes,” J. Compos. Mater., 26, 37-50 (1992).

    Article  Google Scholar 

  33. B. Wade, P. Feraboli, M. Osborne, and M. Rassaian, Simulating laminated composite materials using LS-DYNA material model mat54: single-element investigation,” DOT/FAA/TC, 19, No. 14, (2015).

  34. ESI Group, PAM-CRASH 2011 Solve Reference Manual, Volume VI, Multi-applications/physics modeling , ESI Group (2011).

  35. D. Siromani, J. Awerbuch, and T. M. Tan. “Finite element modeling of the crushing behavior of thin-walled CFRP tubes under axial compression,” Composites: Part B, 64, 50-58 (2014).

    Article  Google Scholar 

Download references

Acknowledgement

The authors acknowledge supports of the Science and Technology Item from the Civil Aviation Administration of China (MHRD20140207), the Fundamental Research Funds for the Central Universities (3122017020, 2017QD10S), and the Fund of Tianjin Key Laboratory of Civil Aircraft Airworthiness and Maintenance in Civil Aviation University of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Y. Feng.

Additional information

Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 55, No. 1, pp. 173-192, January-February, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mou, H.L., Xie, J., Su, X. et al. Crashworthiness Experiment and Simulation Analysis of Composite Thin-Walled Circular Tubes Under Axial Crushing. Mech Compos Mater 55, 121–134 (2019). https://doi.org/10.1007/s11029-019-09797-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-019-09797-x

Keywords

Navigation