Skip to main content
Log in

Determination of the Glass-Transition Temperature of GRPS and CFRPS Using a Torsion Pendulum in Regimes of Freely Damped Vibrations and Quasi-Stastic Torsion of Specimens

  • Published:
Mechanics of Composite Materials Aims and scope

A method to measure the glass-transition temperature of polymers and polymeric matrices of composite materials with the help of an inverse torsion pendulum over a wide range of temperatures is considered combining the method of free torsional vibrations and a quasi-static torsion of specimens. The glass-transition temperature Tg of a KMKS-1-80. T10 fiberglass, on increasing the frequency of freely damped torsional vibrations from 0.7 to 9.6 Hz, was found to increase from 132 to 140°С. The value of Tg of these specimens, determined by measuring the work of their torsion through a small fixed angle was 128.6°C ± 0.8°C. It is shown that the use of a torsion pendulum allows one to determine the glass-transition temperature of polymeric or polymer matrices of PCMs in dynamic and quasi-static deformation regimes of specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

References

  1. J. D. Ferry, Viscoelastic Properties of Polymers, Wiley, 1961.

  2. I. I. Perepechko, Acoustic Research Methods of Polymers [in Russian], M., Khimia, 1973.

  3. J. Heijboer, “The torsion pendulum in the investigation of polymers,” Polym. Eng. Sci., 19, No 10, 664-675 (1979).

    Article  Google Scholar 

  4. K. Menard, Dynamic Mechanical Analysis: A Practical Introduction,. 2nd ed., CRC Press, 2008.

  5. M.Rajesh and J. Pitchaimani, “Dynamic mechanical analysis and free vibration behavior of intra-ply woven natural fiber hybrid polymer composite,” J. Reinf. Plast. Compos., 35, No. 3, 228-242 (2016).

    Article  Google Scholar 

  6. C. S. M. F. Costa, A. C. Fonseca, A. C. Serra, and J. F. J. Coelho, “Dynamic mechanical thermal analysis of polymer composites reinforced with natural fibers,” Polym. Rev., 56, No. 2, 362-383 (2016).

    Article  Google Scholar 

  7. N. Saba, M. Jawaid, O. Y. Alothman, and M. T. Paridah, “A review on dynamic mechanical properties of natural fibre reinforced polymer composites,” Constr. Build. Mater., 106, 149-159 (2016).

    Article  Google Scholar 

  8. O. V. Startsev and I. I. Perepechko, “Dependence of dynamic shear modulus and velocity of sound in composites on filler content,” Mech. Compos. Mater., 1, 135-137 (1979).

    Article  Google Scholar 

  9. G. Rieger, “The glass transition temperature T g of polymers – comparison of the values from differential thermal analysis (DTA, DSC) and dynamic mechanical measurements (torsion pendulum),” Polym. Test., 20, 199-204 (2001).

    Article  Google Scholar 

  10. M. L. Lei, I. Chen, and X. M. Xiong, “A new inverted torsion pendulum-based mechanical spectrometer to study soft matter,” Arch. Metall. Mater., 61, No. 1, 13-16 (2016).

    Article  Google Scholar 

  11. H. Yu, R. D. Adams, and L. F. M. da Silva, “Development of a torsion pendulum and its application to measuring the dynamic modulus of adhesives from pre-gelation to the cured state,” Meas. Sci. Technol., 26, No. 5, 1-9 (2015).

    Google Scholar 

  12. C. Dessi, G. D. Tsibidis, D. Vlassopoulos, M. De Corato, M. Trofa, G. D’Avino, and P. L. Maffetton, “Analysis of dynamic mechanical response in torsion,” J. Rheol. (N. Y. N. Y), 60, No. 2, 275-287 (2016).

    Article  Google Scholar 

  13. O. V. Startsev, V. P. Meletov, B. V. Perov, G. P. Mashinskaya, “Study of the mechanism of aging of organotextolite in a subtropical climate,” Mech, Compos. Mater., No. 3, 331-335 (1986).

  14. O. V. Startsev, J. M. Vapirov, I. S. Deyev, V. A. Yartsev, V. V. Krivonos, E. A. Mitrofanova, and M. A. Chubarova, “Effect of prolonged atmospheric aging on the properties and structure of carbon plastic,” Mech. Compos. Mater., No. 4, 444-449 (1986).

  15. E. N. Kablov, O. V. Startsev, A. S. Krotov, and V. N. Kirillov, “Climatic aging of composite aviation materials: 2. Relaxation of the initial structural nonequilibrium and through thickness gradient of properties,” Russ. Metall., No. 10, 1001-1007 (2011).

  16. D. V. Filistovich, O. V. Startsev, A. A. Kuznetsov, A. S. Krotov, and L. I. Anikhovskaya, “Effect of moisture on the anisotropy of the dynamic shear modulus of glass-reinforced plastics,” Dokl. Phys., 48, No. 6, 306-308 (2003).

    Article  Google Scholar 

  17. V. O. Startsev, M. V. Molokov, O. V. Startsev, T. A. Nizina, and D. R. Nizin, “Effect of an Etal-1 aliphatic thinner on the climatic stability of epoxy polymers on the basis of an ED-20 resin,” All materials. Encyclopedia. Handbook [in Russian], No. 12, 26-36 (2016).

  18. V. O. Startsev, “Across-the-thickness gradient of the interlaminar strength of a CFRP after its long-term exposure to a marine climate,” Mech. Compos. Mater., 52, No 2, 249-256 (2016).

    Article  Google Scholar 

  19. O. V. Startsev, A. Yu. Makhonkov, V. T. Erofeev, and S. Gudozhnikov, “Impact of moisture content on dynamic mechanical properties and transition temperatures of wood,” Wood Mater. Sci. Eng., 12, No. 1, 55-62 (2017).

    Article  Google Scholar 

  20. D. V. Filistovich, O. V. Startsev, and I. Suranov, “Automated installation for a dynamic mechanical analysis,” Prib. Tekhn. Eksperimenta, No. 4, 163-164 (2003).

  21. A. Yu. Mahonkov and O. V. Startsev, “Effect of temperature gradient in the measuring chamber of a torsion pendulum on the determination accuracy of glass-transition temperature of a binder of PCM,” Materialovedeniye, No. 7, 47-52 (2013).

  22. L. A. Dementyev, A. A. Serezhenkov, L. I. Bocharova, L. I. Anihovskaya, and N. F Lukina, “Adhesive composite materials on the basis of glass and carbon fillers,” Klei. Germetiki. Tekchnologii, No. 1, 24-27 (2009).

  23. G. M. Bartenev and S. Ya. Frenkel, Phisics of Polymers [in Russian], Leningrad, 1990.

  24. O. V. Startsev, I. S. Kurrs, I. S. Deyev, and E. F. Nikishin, “Thermal expansion of a KMU-4l carbon plastic after 12 years of exhibiting 2013.in conditions of free space,” Vopr. Materialoved., 76, No. 4, 77-85 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. O. Startsev.

Additional information

Translated from Mekhanika Kompozitnykh Materialov, Vol. 54, No. 1, pp. 21-36 , January-February, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Startsev, V.O., Lebedev, M.P. & Molokov, M.V. Determination of the Glass-Transition Temperature of GRPS and CFRPS Using a Torsion Pendulum in Regimes of Freely Damped Vibrations and Quasi-Stastic Torsion of Specimens. Mech Compos Mater 54, 13–22 (2018). https://doi.org/10.1007/s11029-018-9713-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-018-9713-0

Keywords

Navigation