Skip to main content
Log in

Effect of Thermal Cycling on the Tensile Behavior of Polymer Composites Reinforced by Basalt and Carbon Fibers

  • Published:
Mechanics of Composite Materials Aims and scope

The aim of the present work was to investigate the effect of thermal cycling on the tensile behavior of three types of polymer-matrix composites — a phenolic resin reinforced with woven basalt fibers, woven carbon fibers, and hybrid basalt and carbon fibers — in an ambient environment. For this purpose, tensile tests were performed on specimens previously subjected to a certain number of thermal cycles. The ultimate tensile strength of the specimen reinforced with woven basalt fibers had by 5% after thermal cycling, but the strength of the specimen with woven carbon fibers had reduced to a value by 11% higher than that before thermal cycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. T. L. Brown, “The Effect of Long-Term Thermal Cycling on the Micro-cracking Behavior and Dimensional Stability of Composite Materials,” PhD thesis, Blacksburg, Virginia, USA, 1–6 (2000).

  2. R. Y. Kim, A. S. Crasto, and G. A. Schoeppner, “Dimensional stability of composites in a space thermal environment,”, Compos. Sci. Technol, 60, 2601–2608 (1996).

    Article  Google Scholar 

  3. M. C. Lafarie-Frenot, S. Rouquie, N. Q. Ho, and V. Bellenger, “Comparison of damage development in C/epoxy laminates during isothermal ageing or thermal cycling,” Composites: Part A, 37, 662–671 (2006).

    Article  Google Scholar 

  4. G. C. Papanicolaou, A. G. Xepapadaki, and G. D. Tagaris, “Effect of thermal shock cycling on the creep behavior of glass-epoxy composites,” Compos. Struct., 88, 436–442 ( 2009).

    Article  Google Scholar 

  5. A. H. Nayfeh, “Thermomechanically induced interfacial stresses in fibrous composites,” Fiber Sci. Technol., 10, 195–209 (1977).

    Article  Google Scholar 

  6. B. C. Ray, “Study of the influence of thermal shock on interfacial damage in thermosetting matrix aramid fiber composites,” J. Mater. Sci. Lett, 22, 201–202 (2003).

    Article  Google Scholar 

  7. B. Z. Jang, “Advanced polymer composites- principles and applications,” Proc. ASM Int., Ohio, USA (1994).

    Google Scholar 

  8. W. Shoukai and D. D. L. Chung, “Thermal fatigue in carbon fibre polymer-matrix composites, monitored in real time by electrical resistance measurements,” Polym. Polym. Compos., 9, 135–140 (2001).

    Google Scholar 

  9. K. B. Shin, C. G. Kim, C. S. Hong, and H. H. Lee, “Prediction of failure thermal cycles in graphite/epoxy composite materials under simulated low earth orbit environments,” Composites: Part B, 31, 223–235 (2000).

    Article  Google Scholar 

  10. A. Paillous and C. Pailler, “Degradation of multiply polymer-matrix composites induced by space environment,” Composites, 25, 287–295 (1994).

    Article  Google Scholar 

  11. T. K. Tsotis, K. Keller, K. Lee, J. Bardis, and J. Bish, “Aging of polymeric composite specimens for 5000 hours at elevated pressure and temperature,” Compos. Sci. Technol., 61,75-86 (2001).

    Article  Google Scholar 

  12. K. J. Bowles and A. Meyers, “Specimen geometry effects on graphite/pmr 15 composites during thermo-oxidative ageing,” Proc. 31st Int. SAMPE Symp., Los Angeles, USA (1986), 1285–1299.

  13. J. D. Nam and J. C. Seferis, “Anisotropic thermooxidative stability of carbon fibre reinforced polymeric composites,” SAMPE Q., 24, 10–18 (1992).

    Google Scholar 

  14. I. M. Salin and J. C. Seferis, “Anisotropic effects in thermogravimetry of polymeric composites”, J. Polym. Sci., Part B, 31, 1019–1027 (1993).

    Article  Google Scholar 

  15. K. J. Bowles, M. S. Madhukar, D. S. Papadopoulos, L. Inghram, and L. McCorkle, “The effects of fiber surface modification and thermal aging on composite toughness and its measurement,” J. Compos. Mater., 31, 552–579 (1997).

    Article  Google Scholar 

  16. M. C. Lafarie-Frenot and S. Rouquie, “Influence of oxidative environments on damage in c/epoxy laminates subjected to thermal cycling,” Compos. Sci. Technol., 64, 1725–1735 (2004).

    Article  Google Scholar 

  17. V. P. Sergeev, Y. U. Chuvashov, O. V. Galushchak, I. G. Pervak, and N. S. Fatikova, “Basalt fibers- a reinforcing filler for composites,” Powder Metall. Met. Ceram., 33, 555–557 (1994).

    Article  Google Scholar 

  18. M. Bednar and M. Hajek, “Hitzeschutztextilien aus neuartigen Basalt-Filamentgarnen,” Technische Textilien, 43, 252254 (2000).

    Google Scholar 

  19. A. Pegoretti, E. Fabbri, C. Migliaresi, and F. Pilatiet, “Intraply and interply hybrid composites based on E-glass and poly (vinyl alcohol) woven fabrics: tensile and impact properties,” Polym. Int., 53, 1290–1297 (2004).

    Article  Google Scholar 

  20. A. Bakar, A. Hariharan, and H. P. S. Abdul Khalil, “Lignocellulose-based hybrid bilayer laminate composite: Part I- studies on tensile and impact behavior of oil palm fiber-glass fiber-reinforced epoxy resin,” J. Compos. Mater., 39, 663–684 (2005).

    Article  Google Scholar 

  21. K. Chung, J. C. Seferis, and J. D. Nam, “Investigation of thermal degradation behavior of polymeric composites: prediction of thermal cycling effect from isothermal data,” Composites: Part A, 31, 945–957 (2000).

    Article  Google Scholar 

  22. R. Griffiths and A. Ball, “An assessment of the properties and degradation behaviour of glass-fibre-reinforced polyester polymer concrete,” Compos. Sci. Technol., 60, 2747–2753 (2000).

    Article  Google Scholar 

  23. F. Segovia, C. Ferrer, M. D. Salvador, and V. Amigo, “Influence of processing variables on mechanical characteristics of sunlight aged polyester-glass fibre composites,” Polym. Degrad. Stab., 71, 179–184 (2001).

    Article  Google Scholar 

  24. M. D. Golder and B. Mulholland, “Improved UV stabilization expands uses for polyester elastomers,” Plast. Eng., 46, 43–44 (1990).

    Google Scholar 

  25. A. W. Signor, M. R. Vanlandingham, and J. W. Chin, “Effects of ultraviolet radiation exposure on vinyl ester resins: characterization of chemical, physical and mechanical damage,” Polym. Degrad. Stab., 79, 359–368 (2002).

    Article  Google Scholar 

  26. W. Sakai, T. Sadakane, W. Nishimoto, M. Nagata, and N. Tsutsumi, “Photosensitised degradation and cross-linking of linear aliphatic polyesters studied by GPC and ESR,” Polymer, 43, 6231–6238 (2002).

    Article  Google Scholar 

  27. G. Li, N. Pourmohamadian, A. Cygan, J. Peck, J. E. Helms, and S. S. Pang, “Fast repair of laminated beams using UV curing composites,” Compos. Struct., 60, 73–81 (2003).

    Article  Google Scholar 

  28. E. Grossman and I. Gouzman, “Space environment effects on polymers in low earth orbit,” Nucl. Instrum. Methods Phys. Res., Sect. B., 208, 48–57 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mohammad Reza Khalili.

Additional information

Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 52, No. 6, pp. 1141–1154 , November-December, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalili, S.M.R., Najafi, M. & Eslami-Farsani, R. Effect of Thermal Cycling on the Tensile Behavior of Polymer Composites Reinforced by Basalt and Carbon Fibers. Mech Compos Mater 52, 807–816 (2017). https://doi.org/10.1007/s11029-017-9632-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-017-9632-5

Keywords

Navigation