Skip to main content
Log in

Experimental Study on the Mechanical, Creep, and Viscoelastic Behavior of TiO2/Glass/Epoxy Hybrid Nanocomposites

  • Published:
Mechanics of Composite Materials Aims and scope

The mechanical and viscoelastic properties of hybrid glass/epoxy nanocomposites whose matrix was doped with 0.25, 0.5, and 1 vol.% of TiO2 nanoparticles were investigated in tension and bending. The nanoparticles were found to increase the strength of the composites by 20-30% and their stiffness by 10-20%. In addition, their creep resistance also grew. A SEM analysis of microstructure of the composites revealed that these improvements were caused by an increased adhesion between fibers and the matrix and enhanced properties of the matrix itself.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. B. Wetzela, F. Hauperta, and M. Q. Zhang, “Epoxy nanocomposites with high mechanical and tribological performance,” Compos. Sci. Technol., 63, 2055-2067 (2003).

    Article  Google Scholar 

  2. R. Walter, K. Friedrich, V. Privalko, and A. Savadori, “On modulus and fracture toughness of rigid particulate filled high density polyethylene,” J. Adhes., 64, 87-109 (1997).

    Article  Google Scholar 

  3. L. Nicolais, G. Guerra, C. Migliaresi, L. Nicodemo, and A. T. Di-Benedetto “Viscoelastic behavior of glass-reinforced epoxy resin,” Polym. Compos., 2, No. 3, 116-120 (1981).

    Article  Google Scholar 

  4. W. N. Nkeuwa, B. Riedl, and V. Landry, “UV-cured clay/based nanocomposite topcoats for wood furniture. Part II: Dynamic viscoelastic behavior and effect of relative humidity on the mechanical properties,” Prog. Org. Coat., 77, No. 1, 12-23 (2014).

    Article  Google Scholar 

  5. B. Qi, Z. Yuan, S. Lu, K. Liu, S. Li, L. Yang, and J. Yu, “Mechanical and thermal properties of epoxy composites containing graphene oxide and liquid crystalline epoxy,” Fibers Polym., 15, No. 2, 326-333 (2014).

    Article  Google Scholar 

  6. C. E. S. Ueng, Creep modeling for composite structures, Contemporary Research in Engineering Science, Berlin, springer verlag, 563-575 (1995).

  7. L. Y. Lin, J. H. Lee, C. E. Hong, G. H. Yoo, and S. G. Advani, “Preparation and characterization of layered silicate/glass fiber/epoxy hybrid nanocomposites via vacuum-assisted resin transfer molding (VARTM),” Compos. Sci. Technol., 66, No. 13, 2116-2125 (2006).

    Article  Google Scholar 

  8. C. M. Manjunatha, R. Bojja, N. Jagannathan, A. J. Kinloch, and A. C. Taylor, “Enhanced fatigue behavior of a glass fiber reinforced hybrid particles-modified epoxy nanocomposite under WISPERX spectrum load sequence,” Int. J. Fatigue, 54, 25-31 (2013).

    Article  Google Scholar 

  9. N. H. MohdZulfli, A. AbuBakar, and W. S. Chow, “Mechanical and thermal properties improvement of nano calcium carbonate-filled epoxy/glass fiber composite laminates,” High Perform. Polym., 26, 223-229 (2014).

    Article  Google Scholar 

  10. S. Markkul, H. C. Malecki, and M. Zupan, “Uniaxial tension and compression characterization of hybrid CNS–glass fiber–epoxy composites,” Compos. Struct., 95, 337-345 (2013).

    Article  Google Scholar 

  11. P. Karapappas, P. Tsotra, and K. Scobbie, “Effect of nanofillers on the properties of a state of the art epoxy gelcoat,” EXPRESS Polym. Lett., 5, No. 3, 218-227 (2011).

    Article  Google Scholar 

  12. M. Atarian, H. R. Salehi, M. Atarian, and A. Shoukohfar, “Effect of oxide and carbide nanoparticles on tribological properties of phenolic-based nanocomposites,” Iran. Polym. J., 21, No. 5, 297-305 (2012).

    Article  Google Scholar 

  13. A. Plaseied and A. Fatemi, “Tensile creep and deformation modeling of vinyl ester polymer and its nanocomposite,” J. Reinf. Plast. Compos., 28, No. 14, 1775-1788 (2009).

    Article  Google Scholar 

  14. F. Cortes and M. J. Elejabarrieta, “Modelling viscoelastic materials whose storage modulus is constant with frequency,” Int. J. Solids Struct., 43, 7721-7726 (2006).

    Article  Google Scholar 

  15. R. S. Lakes, Viscoelastic Solids, CRC Press, Boca Raton, Florida, (1998).

    Google Scholar 

  16. H. R. Salehi and M. Salehi, “Synthesis and mechanical properties investigation of nano TiO2/glass/epoxy hybrid nanocomposite,” Iran. J. Polym. Sci. Technol., 28, No. 4, 263-276 (2015).

    Google Scholar 

  17. Yu. J. Huan, W. J. Wei, and Yu. Jin, “Experimental study on FRP-reinforced PP ECC beams under reverse cyclic loading,” Mech. Compos. Mater., 50, No. 4, 447-456 (2014).

    Article  Google Scholar 

  18. R. D. Maksimov and E. Plume, “Long-term creep of hybrid aramid/glass-fiber-reinforced plastics,” Mech. Compos. Mater., 37, No. 4, 271-280 (2001).

    Article  Google Scholar 

  19. I. Viktorova, B. Dandurand, S. Alekseeva, and M. Fronya, “Modeling the creep of polymer-based nanocomposites by using an alternative nonlinear optimization approach,” Mech. Compos. Mater., 48, No. 6, 693-704 (2013).

    Article  Google Scholar 

  20. Y. F. Zhang, S. L. Bai, X. K. Li, and Z. Zhang, “Viscoelastic properties of nanosilica-filled epoxy composites investigated by dynamic nanoindentation,” J. Polym. Sci. Part B: Polym. Phys., 47, 1030-1038 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Salehi.

Additional information

Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 52, No. 5, pp. 887-904 , September-October, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salehi, H.R., Salehi, M. Experimental Study on the Mechanical, Creep, and Viscoelastic Behavior of TiO2/Glass/Epoxy Hybrid Nanocomposites. Mech Compos Mater 52, 623–636 (2016). https://doi.org/10.1007/s11029-016-9612-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-016-9612-1

Keywords

Navigation