Skip to main content
Log in

Two-Scale Modeling of the Mechanical Behavior of a Composite Foam

  • Published:
Mechanics of Composite Materials Aims and scope

The closed-cell foam is a composite with gas and solid phases. At the microlevel, the polystyrene foam was considered as a regular cellular structure whose complex of mechanical properties depends on the properties of polystyrene as an elastic-plastic material. At the macrolevel, the foam was regarded as a solid hyperelastic compressible medium, whose constants were determined in the ANSYS package according to the corresponding calculated deformation diagrams in uniaxial tension/compression, pure shear, and two- and three-axial compression. This technique was tested in the problem on indentation of a rigid sphere into the foam. The calculated indentation curves are in satisfactory agreement with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. I. G. Romanenkov, K. V. Panferov, et al., Manual on the Physicomechanical Characteristics of Constructional Foam Plastics and Honeycombs [in Russian], Stroyizdat, Moscow (1977).

  2. P. G. Babaevskii, A. A. Grabil’nikov, and S. G. Kulik, Industrial Polymer Composite Materials [Russian translation], Khimiya, Moscow (1980).

    Google Scholar 

  3. O. G. Tarakanov, I. V. Shamov, and V. D. Alpern, Filled Plastic Foams [in Russian], Khimiya, Moscow (1988).

    Google Scholar 

  4. U. Vaidya, Composites for Automotive, Truck and Mass Transit: Materials, Design, Manufacturing, DEStech Publications, USA (2010).

  5. N. C. Hilliard, Mechanics of Cellular Plastics [Russian translation], Mir, Moscow (1985).

  6. A. Jung, E. Lach, and S. Diebels, “New hybrid foam materials for impact protection,” Int. J. Impact Eng., 64, 30-38 (2014).

    Article  Google Scholar 

  7. H. Yu, Z. Guo, B. Li, G. Yao, H. Luo, and Y. Liu, “Research into the effect of cell diameter of aluminum foam on its compressive and energy absorption properties,” Mater. Sci. Eng: A, 454/455, 542-546 (2007).

  8. J. A. Kepler and M. R. Hansen, “Numerical modeling of sandwich panel response to ballistic loading — energy balance for varying impactor geometries,” J. Sandw. Struct. Mater., 9, 553-570 (2007).

    Article  Google Scholar 

  9. L. J. Gibson, “Modeling the mechanical behavior of cellular materials,” Mater. Sci. Eng: A, 110, 1-36 (1989).

    Article  Google Scholar 

  10. U. E. Ozturk and G. Anlas, “Energy absorption calculations in multiple compressive loading of polymeric foams,” Mater. Design, 30, No. 1, 15-22 (2009).

    Article  Google Scholar 

  11. S. Ouelleta, D. Cronin, and M. Worswick, “Compressive response of polymeric foams under quasi-static, medium and high strain rate conditions,” Polym. Test., 25, No. 6, 731-743 (2006).

    Article  Google Scholar 

  12. E. A. Flores-Johnson and Q. M. Li, “Indentation into polymeric foams,” Int. J. Solids Struct., 47, 1987-1995 (2010).

    Article  Google Scholar 

  13. M. Brocca, Z. P. Bažant, and I. M. Daniel, “Microplane model for stiff foams and finite element analysis of sandwich failure by core indentation,” Int. J. Solids Struct., 38, Nos. 44/45, 8111-8132 (2001).

  14. I. Jeon, T. Asahina, K.-J. Kang, S. Im, and T. J. Lu, “Finite element simulation of the plastic collapse of closed-cell aluminum foams with X-ray computed tomography,” Mech. Mater., 42, 227-236 (2010).

    Article  Google Scholar 

  15. I. M. Daniel, J.-M. Cho, and B. T. Werner, “Characterization and modeling of stain-rate-dependent behavior of polymeric foams,” Composites: Part A, 45, 70-78 (2013).

    Article  Google Scholar 

  16. M. M. Shokrieh and M. N. Fakhar, “Experimental, analytical, and numerical studies of composite sandwich panels under low-velocity impact loadings,” Mech. Compos. Mater., 47, No. 6, 643-658 (2011).

    Article  Google Scholar 

  17. V. Rizov, A. Shipsha, and D. Zenkert, “Indentation study of foam core sandwich composite panels,” Compos. Struct., 69, 95-102 (2005).

    Article  Google Scholar 

  18. S. Kishimoto, Q. Wang, Y. Tanaka, and Y. Kagawa, “Compressive mechanical properties of closed-cell aluminum foam-polymer composites,” Composites: Part B, 64, 43-49 (2014).

    Article  Google Scholar 

  19. G. S. Langdon, D. Karagiozova, C. J. Von Klemperer, G. N. Nurick, A. Ozinsky, and E. G. Pickering, “The air-blast response of sandwich panels with composite face sheets and polymer foam cores: Experiments and predictions,” Int. J. Impact Eng., 54, 64-82 (2013).

    Article  Google Scholar 

  20. Y. W. Kwon, R. E. Cooke, and C. Park, “Representative unit-cell models for open-cell metal foams with or without elastic filler,” Mater. Sci. Eng: A, 343, 63-70 (2003).

    Article  Google Scholar 

  21. R. Bouix, P. Viot, and J.-L. Lataillade, “Polypropylene foam behavior under dynamic loadings: Strain rate, density and microstructure effects,” Int. J. Impact Eng., 36, 329-342 (2009).

    Article  Google Scholar 

  22. W. Hou, F. Zhu, G. Lu, and D.-N. Fang, “Ballistic impact experiments of metallic sandwich panels with aluminium foam core,” Int. J. Impact Eng., 37, 1045-1055 (2010).

    Article  Google Scholar 

  23. H. Jin, W.-Y. Lu, S. Scheffel, T. D. Hinnerichs, and M. K. Neilsen, “Full-field characterization of mechanical behavior of polyurethane foams,” Int. J. Solids Struct., 44, 6930-6944 (2007).

    Article  Google Scholar 

  24. H. Mahfuz, M. S. Islam, V. K. Rangari, M. C. Saha, and S. Jeelani, “Response of sandwich composites with nanophased cores under flexural loading,” Composites: Part B, 35, 543-550 (2004).

    Article  Google Scholar 

  25. I. Ch. Konstantinidis and S. A. Tsipas, “Symmetry effects and their influence on the mechanical behavior of open and closed cell Al foams,” Mater. Design, 31, 4490-4495 (2010).

    Article  Google Scholar 

  26. A. M. Khanov, L. D. Sirotenko, E. V. Matygullina, I. V. Samusev, and G. V. Bashkirtsev, “Prediction of the physicomechanical properties of highly porous cellular materials on the basis of structural modeling,” Vestn. PNIPU. Ser. Mashinostr. Materialoved., 1, 17-29 (2010).

  27. C. Barbier, P. M. Michaud, D. Baillis, J. Randrianalisoa, and A. Combescure, “New laws for the tension/compression properties of Voronoi closed-cell polymer foams in relation to their microstructure,” Europ. J. Mech. A/Solids, 45, 110-122 (2014).

    Article  Google Scholar 

  28. I. Beverte, “Model of deformation of monotropic plastic foams parallel to the foam rise direction based on the volumedeformation hypothesis,” Mech. Compos. Mater., 37, No. 1, 23-28 (2001).

    Article  Google Scholar 

  29. Y. Ma, X. Su, R. Pyrz, and J. Ch. Rauhe, “A novel theory of effective mechanical properties of closed-cell foam materials,” Acta Mechanica Solida Sinica, 26, No. 6, 559-569 (2013).

  30. J.-J. Hwang, T. Adachi, T. Kuwabara, and W. Araki, “Laminate model expressing mechanical properties of polypropylene foams having non-uniform cell-shape distributions,” Mater. Sci. Eng: A, 487, 369-376 (2008).

    Article  Google Scholar 

  31. V. R. Skvortsov, V. E. Koysin, and A. V. Shipsha, “Stability of the face layer of sandwich structures with a local interlaminar damage,” Mech. Compos. Mater., 38, No. 6, 515-524 (2002).

    Article  Google Scholar 

  32. S. B. Sapozhnikov, Defects and Strength of Reinforced Plastics [in Russian], ChGTU, Chelyabinsk (1994).

    Google Scholar 

Download references

Acknowledgments

This investigation was carried out at the South Ural State University (National Research University) with a financial support of Russian Science Foundation (project No. 14-19-00327).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Ignatova.

Additional information

Translated from Mekhanika Kompozitnykh Materialov, Vol. 51, No. 5, pp. 923-932 , September-October, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ignatova, A.V., Sapozhnikov, S.B. Two-Scale Modeling of the Mechanical Behavior of a Composite Foam. Mech Compos Mater 51, 655–660 (2015). https://doi.org/10.1007/s11029-015-9535-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-015-9535-2

Keywords

Navigation