Skip to main content
Log in

Thermally Induced Vibration and Stability of Initially Stressed Hybrid Composite Plates

  • Published:
Mechanics of Composite Materials Aims and scope

The vibration and buckling behavior of hybrid composite plates with a general state of nonuniform initial stress in thermal environments are investigated. Governing equations including the effects of transverse shear deformation are established using the energy variation method. The initial stress is taken to be a combination of uniaxial extension and pure bending stresses. The temperature distribution in the hybrid plate is assumed to be a combined uniform and linear temperature change in the transverse direction. An example problem on an initially and thermally stressed laminated plate is solved. The effects of various parameters on the thermal induced vibration and stability of hybrid composite plates are studied. The natural frequency and buckling load are found to be sensitive to the thickness ratio of Al to CRFP layers, the state of initial stresses, and temperature rise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. R. M. Jones, “Thermal buckling of uniformly heated unidirectional and symmetric cross-ply laminated fiber-reinforced composite uniaxial in-plane restrained simply supported rectangular plates,” Composites: Part A, Appl. Sci. Manuf., 36, 1355–1367 (2005).

    Article  Google Scholar 

  2. H. Matsunaga, “Thermal buckling of angle-ply laminated composite and sandwich plates according to a global higherorder deformation theory,” Compos. Struct., 72, 177–192 (2006).

    Article  Google Scholar 

  3. H. R. H. Kabir, M. A. M. Hamad, and M. J. John, “Thermal buckling response of all-edge clamped rectangular plates with symmetric angle-ply lamination,” Compos. Struct., 79, 148–155 (2007).

    Article  Google Scholar 

  4. V. Pradeep and N. Ganesan, “Thermal buckling and vibration behavior of multi-layer rectangular viscoelastic sandwich plates,” J. Sound Vibr., 310, 169–183 (2008).

    Article  Google Scholar 

  5. A. Owhadi and B. S. Shariat, “Stability analysis of symmetric laminated composite plates with geometric imperfections under longitudinal temperature gradient,” J. Mech., 25, 161–165 (2009).

    Article  Google Scholar 

  6. A. Lal and B. N. Singh, “Stochastic free vibration of laminated composite plates in thermal environments,” J Thermoplas. Compos. Mat., 23, 57–77 (2010).

    Article  Google Scholar 

  7. S. H. Lo, W. Zhen, Y. K. Cheung, and C. Wanji, “Hygrothermal effects on multilayered composite plates using a refined higher order theory,” Compos. Struct., 92, 633–646 (2010).

    Article  Google Scholar 

  8. Z. A. Rasid, A. Ayob, R. Zahari, F. Mustapha, D. L. Majid, and R. Varatharajoo, “Thermal buckling and post-buckling improvements of laminated composite plates using finite element method,” Key Eng. Mat., 471, 536–541 (2011).

    Article  Google Scholar 

  9. X. Chang, Z. Liang, and Q. Liu, “Buckling and post-buckling analysis of symmetrically angle-ply laminated composite beams under thermal environments,” Adv. Mat. Res., 335, 182–186 (2011).

    Article  Google Scholar 

  10. A. Yapici, “Thermal buckling behavior of hybrid-composite angle-ply laminated plates with an inclined crack,” Mech. Compos. Mat., 41,131-138 (2005).

    Article  Google Scholar 

  11. A. Avci, O. S. Sahin, and M. Uyaner, “Thermal buckling of hybrid laminated composite plates with a hole,” Compos. Struct., 68, 247–254 (2005).

    Article  Google Scholar 

  12. A. Avci, O. S. Sahin, and N. Ataberk, “Thermal buckling behavior of cross-ply hybrid composite laminates with inclined crack,” Compos. Sci. Technol., 66, 2965–2970 (2006).

    Article  Google Scholar 

  13. H. H. Ibrahim, M. Tawfik, and H. M. Negm, “Thermoacoustic random response of shape memory alloy hybrid composite plates,” J. Aircraft, 45, 962–970 (2008).

    Article  Google Scholar 

  14. H. H. Ibrahim, H. H. Yoo, and K. S. Lee, “Thermal buckling and flutter behavior of shape memory alloy hybrid composite shells,” J. Aircraft, l. 46, 895–902 (2009).

    Article  Google Scholar 

  15. S. K. Panda and B N Singh, “Thermal post-buckling analysis of a laminated composite spherical shell panel embedded with shape memory alloy fibres using non-linear finite element method,” J. Mech. Eng. Sci., 224, 757–769 (2010).

  16. Z. A. Rasid, A. Ayob, R. Zahari, D. L. Majid, and A. S. M. Rafie, “Thermal post-buckling of shape memory alloy composite plates under non-uniform temperature distribution,” Engineering and Technology, 56, 1465–1470 (2011).

    Google Scholar 

  17. A. H. Akbarzadeh, M. Abbasi, S. K. Hosseini zad, and M. R. Eslami, “Dynamic analysis of functionally graded plates using the hybrid Fourier-Laplace transform under thermomechanical loading,” Meccanica, 46, 1373–1392 (2011).

    Article  Google Scholar 

  18. C. S. Chen, C. Y. Lin, and R. D. Chien, “Thermally induced buckling of functionally graded hybrid composite plates,” Int. J. Mech. Sci., 53, 51–58 (2011).

    Article  Google Scholar 

  19. C. S. Chen, W. R. Chen, and R. D. Chien, “Stability of parametric vibrations of hybrid laminated plates,” Eur. J. Mech. A/Solids, 28, 329–337 (2009).

    Article  Google Scholar 

  20. C. S. Chen, C. P. Fung, and J. G. Yang, “Assessment of plate theories for initially stressed hybrid laminated plates,” Compos. Struct., 88, 195–201 (2009).

    Article  Google Scholar 

  21. E. J. Brunell and S. R. Robertson, “Initially stressed mindlin plates,” AIAA J., 12, 1036–1045 (1974).

    Article  Google Scholar 

  22. H. Matsunaga “Thermal buckling of cross-ply laminated composite and sandwich plates according to a global higher order deformation theory,” Compos. Struct., 68, 439–454 (2005).

    Article  Google Scholar 

  23. C. F. Liu and C. H. Huang “Free vibration of composite laminated plates subjected to temperature changes,” Comput. Struct., 60, 95–101 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ch. P. Fung.

Additional information

Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 50, No. 5, pp. 811–828 , September-October, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsai, T.C., Chen, C.S., Fung, C.P. et al. Thermally Induced Vibration and Stability of Initially Stressed Hybrid Composite Plates. Mech Compos Mater 50, 579–592 (2014). https://doi.org/10.1007/s11029-014-9446-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-014-9446-7

Keywords

Navigation