Skip to main content
Log in

Micromechanics Solution for the Elastic Moduli of Fiber-Reinforced Concrete

  • Published:
Mechanics of Composite Materials Aims and scope

The overall elastic moduli of fiber-reinforced concrete composite materials are investigated by employing the theory of micromechanics. A method based on the Mori–Tanaka theory and triple inhomogeneities is found to provide a sufficiently accurate evaluation of the average elastic properties of fiber-reinforced concrete composite materials. The inhomogeneities of the materials are divided into three groups: a fine aggregate, a coarse aggregate, and fibers (steel or polymer). The elastic moduli of fiber-reinforced concrete composite materials are determined as functions of the physical properties and volume fraction of sand, gravel, fibers (steel or polymer), and cement paste as a matrix. The theoretical results obtained are compared with published experimental data. The parameters affecting the elastic moduli of fiber-reinforced concrete are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M. Hori and S. Nemat-Nasser, “Double-inclusion model and overall moduli of multi-phase composites,” Mech. Mater., 14, 189-206 (1993).

    Article  Google Scholar 

  2. W. Voig, Über die Beziehung zwischen den beiden Elastizitātskonstanten isotroper Körper. Wied Ann; 38, 573-587 (1889).

    Article  Google Scholar 

  3. A. Reuss, Berechnung der Fliessgrenze von Mischkrisallen auf Grund der Plastizitatsbedingung fur Einkristalle. Z. Angew. Math. Mech., No. 9, 49-58 (1929).

  4. Z. Hashin and S. Shtrikman, “A variational approach to the elastic behavior of multiphase materials,” J. Mech. Phys. Solids, 11, 127-240 (1963).

    Article  Google Scholar 

  5. T. Mori and K. Tanaka, “Average stress in matrix and average elastic energy of materials with misfitting inclusions,” Acta Metallurgica, No. 21, 571-574 (1973).

  6. J. D. Eshelby, “The determination of the elastic field of an ellipsoidal inclusion, and related problems,” Proc. Roy. Soc. Lond., 241. 376-392 (1957).

    Article  Google Scholar 

  7. T. Mura, Micromechanics of Defects in Solids. Second Revised Edition. Martinus Nijhoff Publishers, 1987.

  8. R. M. Christensen, “A critical evaluation for a class of micro-mechanics models,” J. Mech. Phys. Solids, 38, 379-404 (1990).

    Article  Google Scholar 

  9. A. Lutfi, Steel Fibrous Cement Based Composites, Ph.D. Thesis, Sweden Royal Institute of Technology, 2004.

  10. S. Ahmed and F. R. Jones, “A review of particulate reinforcement theories for polymer composites,” J. Mater. Sci., 25, 4933-4942 (1990).

    Article  Google Scholar 

  11. M. Anson and K. Newman, “The effect of mix proportions and method of testing on Poisson’s ratio for mortars and concretes,” Magazine of Concrete Research, 18, No. 1, 115-130 (1966).

    Article  Google Scholar 

  12. P. Simeonov and S. Ahmad, “Effect of transition zone on the elastic behaviour of cement-based compositesm,” Cement and Concrete Research, 25, No. 1, 165-176 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Jia Huan.

Additional information

Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 50, No. 4, pp. 715-726, July-August, 2014.

Appendix

Appendix

The explicit expression needed to calculate the tensors used in the text are as follows:

$$ \begin{array}{c}\hfill A=\left[\left(1-{f}_1\right) C+{f}_1{C}_1^{\ast}\right]\left({S}_1- I\right)-{C}_1^{\ast }{S}_1,\hfill \\ {}\hfill B=\left[\left(1-{f}_2\right) C+{f}_2{C}_2^{\ast}\right]\left({S}_2- I\right)-{C}_2^{\ast }{S}_2,\hfill \\ {}\hfill D=\left[\left(1-{f}_3\right) C+{f}_3{C}_3^{\ast}\right]\left({S}_3- I\right)-{C}_3^{\ast }{S}_3,\hfill \\ {}\hfill \begin{array}{cc}\hfill M=\left({C}_1^{\ast }- C\right)\left({S}_2- I\right),\hfill & \hfill N=\left({C}_2^{\ast }- C\right)\left({S}_1- I\right),\hfill \end{array}\hfill \\ {}\hfill \begin{array}{cc}\hfill P=\left({C}_3^{\ast }- C\right)\left({S}_1- I\right),\hfill & \hfill Q=\left({C}_1^{\ast }- C\right)\left({S}_3- I\right),\hfill \end{array}\hfill \\ {}\hfill \begin{array}{cc}\hfill R=\left({C}_2^{\ast }- C\right)\left({S}_3- I\right),\hfill & \hfill S=\left({C}_3^{\ast }- C\right)\left({S}_2- I\right),\hfill \end{array}\hfill \\ {}\hfill {\upsigma}^0\left( I-{C}_1^{\ast }{C}^{-1}\right)+ A\left\langle {\varepsilon}_1^{\ast}\right\rangle +{f}_2 M\left\langle {\varepsilon}_2^{\ast}\right\rangle +{f}_3 Q\left\langle {\varepsilon}_3^{\ast}\right\rangle =0,\hfill \\ {}\hfill {\upsigma}^0\left( I-{C}_2^{\ast }{C}^{-1}\right)+ B\left\langle {\varepsilon}_2^{\ast}\right\rangle +{f}_1 N\left\langle {\varepsilon}_1^{\ast}\right\rangle +{f}_3 R\left\langle {\varepsilon}_3^{\ast}\right\rangle =0,\hfill \\ {}\hfill {\upsigma}^0\left( I-{C}_3^{\ast }{C}^{-1}\right)+ D\left\langle {\varepsilon}_3^{\ast}\right\rangle +{f}_1 P\left\langle {\varepsilon}_1^{\ast}\right\rangle +{f}_2 S\left\langle {\varepsilon}_2^{\ast}\right\rangle =0,\hfill \\ {}\hfill \begin{array}{ccc}\hfill \left\langle {\varepsilon}_1^{\ast}\right\rangle =\alpha {\upsigma}^0,\hfill & \hfill \left\langle {\varepsilon}_2^{\ast}\right\rangle =\beta {\upsigma}^0,\hfill & \hfill \left\langle {\varepsilon}_3^{\ast}\right\rangle =\rho {\upsigma}^0.\hfill \end{array}\hfill \end{array} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huan, Y.J., Yang, L., Jin, Y. et al. Micromechanics Solution for the Elastic Moduli of Fiber-Reinforced Concrete. Mech Compos Mater 50, 515–522 (2014). https://doi.org/10.1007/s11029-014-9438-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-014-9438-7

Keywords

Navigation