Skip to main content
Log in

An iterative Mori–Tanaka approach

  • Published:
Mechanics of Composite Materials Aims and scope

The aim of this paper is to evaluate the effective material properties of particle-reinforced composites. The Mori–Tanaka approach overstates the strain of inclusions and therefore underestimates the resulting effective rigidity of composite materials. We propose an iteration method for the Mori–Tanaka approach. Initially, the effective elastic tensor of a composite material is found by using the Mori–Tanaka approach. Then the new composite is taken as a background material, and the inclusions and matrix are both embedded into it. The resulting material is softer than predicted by the self-consistent approach, but stiffer than forecasted by the Mori–Tanaka method. The predictions are compared with data from the literature and are shown to be very accurate over wide ranges of inclusion concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. W. Voigt, “Uber die Beziehung zwischen den beiden Elastizitätskonstanten isotroper Korper.Wied Ann, 38, 573–587 (1889).

    Article  Google Scholar 

  2. A. Reuss, “Berechnung der fliessgrenze von Mischkristallen auf Grund der Plastiztatasvedingung für Einkristalle,” Z angew Math. Mech., 9, 49–58 (1929).

    Article  CAS  Google Scholar 

  3. R. Hill, “A self-consistent mechanics of composite materials,” J. Mech. Phys. Solids, 13, 213–222 (1965).

    Article  Google Scholar 

  4. A. V. Hershey, “The elasticity of an isotropic aggregate of anisotropic cubic crystals,” J. Appl. Mech., 21, 226–240 (1954).

    Google Scholar 

  5. E. Kröner, “Berechung der elastischen konstanten des vielkristallsaus den konstanten des Einkristalls,” Z. Phys., 151, 504–518 (1958).

    Article  Google Scholar 

  6. B. Budiansky, On the elastic moduli of some heterogeneous materials,” J. Mech. Phys. Solids, 13, 223–227 (1965).

    Article  Google Scholar 

  7. R. Hill, “A self-consistent mechanics of composite materials,” J. Mech. Phys. Solids, 13, 213–222 (1965).

    Article  Google Scholar 

  8. S. Nemat-Nasser and M. Hori, Micromechanics: Overall Properties of Heterogeneous Materials. Elsevier, North–Holland, 1993.

    Google Scholar 

  9. M. Hori and S. Nemat-Nasser, “Double-inclusion model and overall moduli of multi-phase composites,” Mech. Mater., 14, 189–206 (1993).

    Article  Google Scholar 

  10. T. Mori, and K. Tanaka, “Average stress in matrix and average elastic energy of materials with misfitting inclusions,” Acta Metall. Mater., 21, 571–574 (1973).

    Article  Google Scholar 

  11. R. M. Christensen and K. H. Lo, “Solutions for effective shear properties in three phase space and cylinder model,” J. Mech. Phys. Solids, 27, 315–330 (1979).

    Article  CAS  Google Scholar 

  12. Y. Huang, K. X. Hu, and A. Chandra, “A generalized self-consistent mechanics method for microcracked solids,” J. Mech. Phys. Solids, 42, 1273–1291 (1994).

    Article  Google Scholar 

  13. G .K. Hu and G. J. Weng, “Some reflections on the Mori–Tanaka and Ponte Castaneda–Willis methods with randomly oriented ellipsoidal inclusions,” Acta Mech., 140, 31–40 (2000).

    Article  Google Scholar 

  14. 14 A. A. Pan’kov, “Generalized self-consistent method: Modeling and computation of effective elastic properties of composites with composite or hollow inclusions,” Mech. Compos. Mater., 34, 123–131 (1998).

    Article  Google Scholar 

  15. A. A. Pan’kov, “Generalized self-consistent method for predicting the effective elastic properties of composites with random hybrid structures,” Mech. Compos. Mater., 33, 201–202 (1997).

    Article  Google Scholar 

  16. G. J. Weng, “Some elastic properties of reinforced solids, with special reference to isotropic one containing spherical inclusions,” Int. J. Eng. Sci., 22 No. 7, 845–856 (1984).

    Article  Google Scholar 

  17. 17 L. X. Li and T. J. Wang, “A unified approach to predict overall properties of composite materials,” Mater. Charact., 54, 49–62 (2005).

    Article  CAS  Google Scholar 

  18. J. D. Eshelby, “The determination of the elastic field of an ellipsoidal inclusion and related Problem,” Proc. R. Soc. Lond. A, 241, 376–396 (1957).

    Article  Google Scholar 

  19. X. Peng , N. Hu, H. Zheng , and H. Fukunaga, “Evaluation of mechanical properties of particulate composites with a combined self-consistent and Mori–Tanaka approach,” Mech. Mater., 41, 1288–1297 (2009).

    Article  Google Scholar 

  20. J. W. Ju and T. M. Chen, Princeton, New Jersey. Effective elastic moduli of two-phase composites containing randomly dispersed spherical inhomogeneities,” Acta Mechanica, 103, 123–144 (1994).

    Article  Google Scholar 

  21. M. Kouzeli and D. C. Dunand, “Effect of reinforcement connectivity on the elasto-plastic behavior of aluminum composites containing submicron alumina particles,” Acta Mater., 51, 6105–6121 (2003).

    Article  CAS  Google Scholar 

  22. L. J. Cohen, O. Ishai, “The elastic properties of three-phase composites,” J. Compos. Mater., 1, 390–403 (1967).

    Article  Google Scholar 

  23. T. G. Richard, The mechanical behavior of a solid microsphere filled composite,” J. Cmp. Mater. 9, 108–113 (1975).

    Article  Google Scholar 

  24. J. C. Smith, “Experimental values for the elastic constants of a particulate-filled glassy polymer,” J. Res. NBS 80A, 45–49 (1976).

    Article  CAS  Google Scholar 

  25. J. B. Walsh, W. E. Brace, and A. W. England, “Effect of porosity on compressibility of glass,” J. Am. Ceram. Soc. 48, 605–608 (1965).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support to this work from NSFC under Grant Number 10976032. We are also grateful to X. Peng and H. Zheng for the support and theoretical help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Fang.

Additional information

Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 49, No. 3, pp. 445-454, May-June, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, C., Xie, X. An iterative Mori–Tanaka approach. Mech Compos Mater 49, 305–310 (2013). https://doi.org/10.1007/s11029-013-9347-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-013-9347-1

Keywords

Navigation