Skip to main content
Log in

A new three-dimensional analytical model to simulate microresidual stresses in polymer matrix composites

  • Published:
Mechanics of Composite Materials Aims and scope

Based on the energy method and the principle of minimum total complementary potential energy, a new three-dimensional analytical model is developed. A three-dimensional analysis is performed for a unit-cell representative volume element (RVE) consisting of a monofiber, a matrix, and an interphase region. The model is evaluated using the finite-element technique. In order to study the effects of neighboring fibers on the residual stresses, several microstructural finite-element models are considered. It is proved that the RVE used in the analytical model is suitable for predicting the thermal microresidual stresses in polymer composites. In comparison with the analytical model, the finite-element analysis presents a little higher residual stresses. According to the results of the analytical model, the interfacial shear stress reaches a maximum in the vicinity of fiber ends, while the finite-element analysis gives a maximum shear stress at composite ends. This is due to the edge singularity, which is not considered in the finite-element model. Although the interphase region affects the distribution of interfacial radial stresses only slightly, it has a significant effect on the maximum interfacial radial stresses at fiber ends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. W. D. J. Callister, Materials Science and Engineering — an Introduction, John Wiley & Sons, Inc., 1994.

  2. J. A, Nairn and P. Zoller, “Matrix solidification and the resulting residual thermal stresses in composites,” J. Mater. Sci.;20, No. 1, 355-367 (1985).

    Article  CAS  Google Scholar 

  3. J. K. Kim, Y. W. Mai, Engineered Interfaces in Fiber-Reinforced Composites, 1st edition, 1998.

  4. R. D. Kurtz and N. J. Pagano, “Analysis of the deformation of a symmetrically loaded fiber embedded in a matrix material,” Compos. Eng., 1, No. 1, 13-127 (1991).

    Article  Google Scholar 

  5. Z. M. Huang, “Strength formulae of unidirectional composites including thermal residual stresses,” Mater. Lett. 40, No. 4, 164–169 (1999).

    Article  CAS  Google Scholar 

  6. G. C. Papanicolaou, M. V. Michalopoulou, and N. K. Anifantis, “Thermal stresses in fibrous composites incorporating hybrid interphase regions,” Composites Science and Technology, 62, 1881-1894 (2002).

    Article  CAS  Google Scholar 

  7. Z. Hashin and W. B. Rosen, “The elastic moduli of fiber-reinforced materials,” J. Appl. Mech., 31, 223-232 (1964).

    Article  Google Scholar 

  8. R. A. Naik “Simplified micromechanical equations for a thermal residual stress analysis of coated-fiber composites,” J. Compos. Techn. Res., 14, No. 3, 182–186 (1992).

    Article  Google Scholar 

  9. K. Jayaraman and K. L. Reifsnider, “Residual stresses in a composite with a continuously varying Young’s modulus in the fiber/matrix interphase,” J. Compos. Mater., 26 No. 6, 770-791 (1992).

    Article  CAS  Google Scholar 

  10. K. Jayaraman and K. L. Reifsnider, “The interphase in unidirectional fiber-reinforced epoxies: effect of residual thermal stresses,” Compos. Sci. Techn., 47, 119-129 (1993).

    Article  CAS  Google Scholar 

  11. V. Bianchi, P. Goursat, and E. Menessier, “Carbon-fiber-reinforced YMAS glass ceramic matrix –IV Thermal residual stresses and fiber/matrix interfaces,” Compos. Sci. Techn., 58, 409-418 (1998).

    Article  CAS  Google Scholar 

  12. C. H. Shueh and P. F. Becher, “Thermal expansion coefficient of unidirectional fiber reinforced ceramics,” J. Am. Ceram. Soc., 71, C438-C441 (1988).

    Article  Google Scholar 

  13. M. Epstein, “The Eshelby tensor and the theory of continuous distributions of inhomogeneities,” Mech. Res. Communication, 29, No. 6, 501-506 (2002).

    Article  Google Scholar 

  14. M. Y. Quek, “Analysis of residual stresses in a single fiber-matrix composite,” Int. J. Adhesion & Adhesives, 24, 379388 (2004).

    Article  Google Scholar 

  15. Y. Chen, Z. Xia, F. Ellyin, “Evolution of residual stresses induced during curing processing using a viscoelastic micro-mechanical model,” J. Compos. Mater., 35, 522 (2001).

    Article  CAS  Google Scholar 

  16. G. Karami and M. Garnich, “Micromechanical study of thermoelastic behavior of composites with periodic fiber waviness,” Composites, Pt. B, 36, 241-248 (2005).

    Article  Google Scholar 

  17. M. M. Aghdam, A. Khojeh, “More on the effects of thermal residual and hydrostatic stresses on the yielding behavior of unidirectional composites,” Composite Structures, 62, 285-290 (2003).

    Article  Google Scholar 

  18. T. Hobbiebrunken, B. Fiedler, M. Hojo, S. Ochiai, and K. Schulte, “Microscopic yielding of CF/epoxy composites and the effect on the formation of thermal residual stresses,” Compos. Sci. Techn., 65, 1626-1635 (2005).

    Article  CAS  Google Scholar 

  19. L. G. Zhao, N. A. Warrior, and A. C. Long, “A thermo-viscoelastic analysis of process-induced residual stress in fibre-reinforced polymer–matrix composites,” Mater. Sci. Eng., A, 452–453, 483–498 (2007).

  20. Kyo-Kook Jin, Y. Huang, Young-Hwan Lee, and Sung Kyu Ha., “Distribution of micro-stresses and interfacial tractions in unidirectional composites,” J. Compos. Mater., 42, 2008; 1825 originally published online Jul 17, (2008).

  21. Y. Huang, Kyo Kook Jin, and Sung Kyu Ha, “Effects of fiber arrangement on mechanical behavior of unidirectional composites,” J. Compos. Mater., 42, 2008; 1851 originally published online Jul 17, (2008).

  22. L. Hassel, and M. L. Dunn, “Equivalence of Eshelby inclusion theory and Wechsler–Lieberman–Read, Bowles–Mackenzie martensite-crystallography theories,” Mater. Sci. Eng., A., 285, Iss. 1-2, 180-185 (2000).

    Article  Google Scholar 

  23. M. Y. Quek and C. Y. Yue, “Axisymmetric stress distribution in the single filament pull-out test,” Mater. Sci. Eng., A189, 105–116 (1994).

    CAS  Google Scholar 

  24. Y. Zhang, Z. Xia, and F. Ellyin, “Evolution and influence of residual stresses/strains of fiber reinforced laminates,” Compos. Sci. and Techn., 64, 1613-1621 (2004).

    Article  CAS  Google Scholar 

  25. D. Y. Song, Takeda, N. Shinji Ogihara, “A method of stress analysis for interfacial property evaluation in thermoplastic composites,” Mater. Sci. Eng., A278, 242-246 (2000).

    CAS  Google Scholar 

  26. Maple 12, Copyright 1981-2008 by Waterloo Maple Inc.

  27. Abaqus software, version 6.7-1, copyright 1998-2008 by ABAQUS Inc.

  28. L. H. You and X. Y. You, “A unified numerical approach for thermal analysis of transversely isotropic fiber-reinforced composites containing inhomogeneous interphase,” J. Compos., Pt. A: Appl. Sci. and Manufacturing, 36, 728-73 (2005).

    Article  Google Scholar 

  29. S. Nemat-Nasser and M. Hori, Micromechanics: Overall Properties of Heterogeneous Materials, Amsterdam: Elsevier Sci. Publ., 1993.

    Google Scholar 

  30. A. Matzenmiller, S. Gerlach, “Parameter identification of elastic interphase properties in fiber composites,” Composites, Pt. B, 37, 117–126 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Shokrieh.

Additional information

Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 48, No. 3, pp. 401-418, May-June, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shokrieh, M.M., Safarabadi, M. & Ghaanee, A.R. A new three-dimensional analytical model to simulate microresidual stresses in polymer matrix composites. Mech Compos Mater 48, 273–284 (2012). https://doi.org/10.1007/s11029-012-9274-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-012-9274-6

Keywords

Navigation