Skip to main content

Advertisement

Log in

Analytical prediction of damage in the composite part of a type-3 hydrogen storage vessel

  • Published:
Mechanics of Composite Materials Aims and scope

The damage behavior of a type-3 hydrogen storage vessel is modeled. The vessel consists of a metal envelop, called liner, coated with a filament winding. The model proposed allows simulating the mechanical response of the structure to a quasi-static loading. The model is based on a meso-macro approach and takes into account the damage behavior of the composite and the elastoplastic deformation of the liner. The results obtained are compared with experimental data. Finally, the effect of stacking sequence of filament layers on the damage level in the composite is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Z. Li, Z. Yaping, and S.Yan, “Enhanced storage of hydrogen at the temperature of liquid nitrogen,” Int. J. of Hydrogen Energy, 29, 319–322 (2004).

    Article  Google Scholar 

  2. R. Janot, M. Latroche, and A. Percheron-Guégan, “Development of a hydrogen absorbing layer in the outer shell of high pressure hydrogen tanks,” Mater. Sci. and Eng., B, 123, No. 3, 187–193 (2005).

    Article  Google Scholar 

  3. C.-M. Rangel, V.-R. Fernandes, Y. Slavkov, and L. Bozukov, “Integrating hydrogen generation and storage in a novel compact electrochemical system based on metal hydrides,” J. of Power Sources, 181, Nos. 2, 1, 382–385 (2008).

    Article  CAS  Google Scholar 

  4. Nobuhiko Takeichi, Hiroshi Senoh, Tomoyuki Yokota, Hidekazu Tsuruta, Kenjiro Hamada, Hiroyuki T. Takeshita, Hideaki Tanaka, Tetsu Kiyobayashi, Toshio Takano, and Nobuhiro Kuriyama, “Hybrid hydrogen storage vessel, a novel high pressure hydrogen storage vessel combined with hydrogen storage material,” Int. J. of Hydrogen Energy, 28, 1121–1129 (2003).

    CAS  Google Scholar 

  5. D. Chapelle and D. Perreux, “Optimal design of a Type 3 hydrogen vessel: Pt I. Analytic modelling of the cylindrical section,” Int. J. of Hydrogen Energy, 31, 627–638 (2006).

    Article  CAS  Google Scholar 

  6. P. Y. Tabakov and E. B. Summers, “Lay-up optimization of multilayered anisotropic cylinders based on a 3-D elasticity solution,” Computers and Structures, 84, 374–84 (2006).

    Article  Google Scholar 

  7. J. Y. Kim, R. Hennig, V. T. Huett, P. C. Gibbons, and K. F. Kelton, “Hydrogen absorption in Ti–Zr–Ni quasicrystals and 1/1 approximants,” J. of Alloys and Compounds, 404-406, 388–391 (2005).

    Article  Google Scholar 

  8. J. Bai, P. Seeleuthner, and P. Bompard, “Mechanical behavior of ±55° filament-wound glass-fiber/epoxy-resin tubes: I. Microstructural analysis, mechanical behavior and damage mechanisms of composite tubes under pure tensile loading, pure internal pressure and combined loading,” Composites Sci. and Techn., 57, No. 2, 141–153 (1997).

    Article  CAS  Google Scholar 

  9. A. A. Smerdov, “A computational study in optimum formulations of optimization problems on laminated cylindrical shells for buckling I. Shells under axial compression,” Composites Sci. and Techn., 60, No. 11, 2057–2066 (2000).

    Article  Google Scholar 

  10. J. Rousseau, D. Perreux, and N. Verdière, “The influence of winding patterns on the damage behaviour of filamentwound pipes,” Composites Sci. and Techn., 59, No. 9, 1439–1449 (1999).

    Article  CAS  Google Scholar 

  11. D. Perreux and F. Thiebaud, “Damaged elasto-plastic behaviour of [+θ, −θ] fibre-reinforced composite laminates in biaxial loading,” Composites Sci. and Techn., 54, No. 3, 275–285 (1995).

    Article  CAS  Google Scholar 

  12. M. C. Lafarie-Frenot, C. Henaff-Gardin, and D. Gamby, Matrix cracking induced by cyclic ply stresses in composite laminates,” Composites Sci. and Techn., 61, 2327–2336 (2001).

    Article  CAS  Google Scholar 

  13. D. Gamby, C. Henaff-Gardin, and M. C. Lafarie-Frenot, “Propagation of edge cracking towards the centre of laminated composite plates subjected to fatigue loading,” Composite Structures, 56, 183–190 (2002).

    Article  Google Scholar 

  14. D. Perreux and E. Joseph, “The effect of frequency on the fatigue performance of filament-wound pipes under biaxial loading: experimental results and damage model,” Composites Sci. and Techn., 57, 353–364 (1991).

    Article  Google Scholar 

  15. L. Farines, Évaluation du potentiel restant de structures composites verre/époxy soumises à des sollicitations de fatigue. Thèse de doctorat. Franche-comté university, Besançon, France. Septembre 2007.

  16. A. Hocine, D. Chapelle, L. Boubakar, A. Benamar, and A. Bezazi, “Experimental and analytical of the cylindrical part of a metallic vessel reinforced by filament winding submitted to internal pressure,” Int. J. of Pressure Vessels and Piping, 86, 649–655 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Hocine.

Additional information

Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 48, No. 1, pp. 111–128, January-February, 2012.

Appendices

Appendix A

The function of loading is taken in the form

$$ {f^d} = - Y - {Y_C} - {R^d} \leqslant 0. $$

Then we can write:

$$ \begin{array}{*{20}{c}} {{{\dot{D}}_{\text{I}}} = 0\,\,\,{\text{if}}\,\,\,{f^d} < 0\,\,\,{\text{or}}\,\,\,{f^d} = 0,\frac{{\partial {f^d}}}{{\partial Y}}\dot{Y} < 0,} \\ {{{\dot{D}}_{\text{I}}} \ne 0\,\,\,{\text{if}}\,\,\,{f^d} = 0\,\,\,{\text{and}}\,\,\,\frac{{\partial {f^d}}}{{\partial Y}}\dot{Y} > 0.} \\ \end{array} $$

When loading causes damage,

$$ {f^d} = 0\,\,\,{\text{and}}\,\,\,\frac{{\partial {f^d}}}{{\partial Y}}\dot{Y} > 0. $$

The kinetics of damage is determined by the laws of evolution

$$ {\dot{D}_{\text{I}}} = - {\dot{\lambda }^d}\frac{{\partial {f^d}}}{{\partial Y}} = {\dot{\lambda }^d},\,\,\,\,{\bar{D}_{\text{I}}} = - {\dot{\lambda }^d}\frac{{\partial {f^d}}}{{\partial Y}} = {\dot{\lambda }^d}. $$

where \( {\dot{\lambda }^d} \) is the Lagrange multiplier. The expressions can be obtained by using the consistency equation

$$ {f^d} = 0. $$

We can write

$$ \begin{array}{*{20}{c}} {{R_d} = {Y_c} + Y,} \\ {Y = {Y_{\text{I}}} + {Y_{\text{II}}} \times {X_{\text{II}}} + {Y_{\text{III}}} \times {X_{\text{III}}},} \\ \end{array} $$
$$ \left\{ {\begin{array}{*{20}{c}} {{Y_{\text{I}}} = {{\left[ {\frac{{\partial \psi }}{{\partial {D_{\text{I}}}}}} \right]}_{{\sigma_4},{\sigma_6}}} = \frac{{{s_{22}}}}{{2{{\left( {1 - {D_{\text{I}}}} \right)}^2}}}\sigma_{22}^2,} \hfill \\ {{Y_{\text{II}}} = {{\left[ { - \frac{{\partial \psi }}{{\partial {D_{\text{II}}}}}} \right]}_{{\sigma_2},{\sigma_4}}} = \frac{{{s_{66}}}}{{2{{\left( {1 - {D_{\text{II}}}} \right)}^2}}}\sigma_{66}^2,} \hfill \\ {{Y_{\text{III}}} = {{\left[ { - \frac{{\partial \psi }}{{\partial {D_{\text{III}}}}}} \right]}_{{\sigma_2},{\sigma_6}}} = \frac{{{s_{44}}}}{{2{{\left( {1 - {D_{\text{III}}}} \right)}^2}}}\sigma_{44}^2,} \hfill \\ {{X_{\text{II}}} = \left[ { - \frac{{\partial {D_{\text{II}}}}}{{\partial {D_{\text{I}}}}}} \right]\frac{{{s_{66}}\sqrt {{{s_{11}}{s_{22}}}} }}{{{{\left( {{s_{66}} + \frac{{{D_{\text{I}}}\sqrt {{{s_{11}}{s_{22}}}} }}{{\sqrt {{1 - {D_{\text{I}}}}} }}} \right)}^2}}}\frac{\partial }{{\partial {D_{\text{I}}}}}\left( {\frac{{{D_{\text{I}}}}}{{\sqrt {{1 - {D_{\text{I}}}}} }}} \right) = \frac{{{s_{66}}\sqrt {{{s_{11}}{s_{22}}}} }}{{{{\left( {{s_{66}} + \frac{{{D_{\text{I}}}\sqrt {{{s_{11}}{s_{22}}}} }}{{\sqrt {{1 - {D_{\text{I}}}}} }}} \right)}^2}}}\frac{{2 - {D_{\text{I}}}}}{{2{{\left( {\sqrt {{1 - {D_{\text{I}}}}} } \right)}^3}}},} \hfill \\ {{X_{\text{III}}} = \frac{{\partial {D_{\text{III}}}}}{{\partial {D_{\text{I}}}}} = \frac{{{s_{66}}{s_{22}}}}{{{{\left( {{s_{44}} + \frac{{{D_{\text{I}}}{s_{22}}}}{{\sqrt {{1 - {D_{\text{I}}}}} }}} \right)}^2}}} - \frac{{2 - {D_{\text{I}}}}}{{2{{\left( {\sqrt {{1 - {D_{\text{I}}}}} } \right)}^3}}}.} \hfill \\ \end{array} } \right. $$

Appendix B

The continuity condition for the radial displacements is

$$ \forall k \in \left[ {1,w - 1} \right],\,\,\,{U^{(k)}}\left( {r_{\text{ext}}^{(k)}} \right) = {U^{\left( {k + 1} \right)}}\left( {r_{\text{ext}}^{(k)}} \right). $$

The continuity condition for the radial stresses is

$$ \left\{ {\begin{array}{*{20}{c}} {\forall k \in \left[ {1,w - 1} \right],} \hfill & {\sigma_r^{(k)}\left( {r_{\text{ext}}^{(k)}} \right) = \sigma_{\text{ext}}^{\left( {k + 1} \right)}\left( {r_{\text{ext}}^{(k)}} \right),} \hfill \\ {\sigma_r^{(1)}\left( {{r_0}} \right) = - {p_0},} \hfill & {} \hfill \\ {\sigma_r^{(w)}\left( {{r_a}} \right) = 0.} \hfill & {} \hfill \\ \end{array} } \right. $$

The axial equilibrium condition for the solution with the closed-end effect can be expressed as

$$ 2\pi \sum\limits_{k = 1}^w {\int\limits_{{\eta_{k - 1}}}^{{r_k}} {\sigma_z^{(k)}(r)rdr = \pi r_0^2{p_0}.} } $$

The zero torsion condition is

$$ 2\pi \sum\limits_{k = 1}^w {\int\limits_{{r^{\left( {k - 1} \right)}}}^{{r^{(k)}}} {{\tau_{z\theta }}} (r){r^2}dr = 0.} $$

Finally, the problem can be reduced to a linear system of the form

$$ X = {A^{ - 1}} \times B, $$
$$ \left[ {\begin{array}{*{20}{c}} {{D^1}} \hfill \\ {{D^2}} \hfill \\ {{D^3}} \hfill \\ {{D^4}} \hfill \\ {{E^1}} \hfill \\ {{E^2}} \hfill \\ {{E^3}} \hfill \\ {{E^4}} \hfill \\ {{\varepsilon_0}} \hfill \\ {{\gamma_0}} \hfill \\ \end{array} } \right] = {\left[ {\begin{array}{*{20}{c}} {{d_{11}}} \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {{e_{11}}} \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {{\alpha_{11}}} \hfill & {{\alpha_{12}}} \hfill \\ {{d_{21}}} \hfill & {{d_{22}}} \hfill & 0 \hfill & 0 \hfill & {{e_{21}}} \hfill & {{e_{22}}} \hfill & 0 \hfill & 0 \hfill & {{\alpha_{21}}} \hfill & {{\alpha_{22}}} \hfill \\ 0 \hfill & {{d_{32}}} \hfill & {{d_{33}}} \hfill & 0 \hfill & 0 \hfill & {{e_{32}}} \hfill & {{e_{33}}} \hfill & 0 \hfill & {{\alpha_{31}}} \hfill & {{\alpha_{32}}} \hfill \\ 0 \hfill & 0 \hfill & {{d_{43}}} \hfill & {{d_{44}}} \hfill & 0 \hfill & 0 \hfill & {{e_{43}}} \hfill & {{e_{45}}} \hfill & \alpha \hfill & \alpha \hfill \\ {{d_{15}}} \hfill & {{d_{52}}} \hfill & 0 \hfill & 0 \hfill & e \hfill & e \hfill & 0 \hfill & 0 \hfill & \alpha \hfill & \alpha \hfill \\ 0 \hfill & {{d_{62}}} \hfill & {{d_{63}}} \hfill & 0 \hfill & 0 \hfill & e \hfill & e \hfill & 0 \hfill & \alpha \hfill & \alpha \hfill \\ 0 \hfill & 0 \hfill & {{d_{73}}} \hfill & {{d_{64}}} \hfill & 0 \hfill & 0 \hfill & e \hfill & e \hfill & \alpha \hfill & \alpha \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill & d \hfill & d \hfill & d \hfill & e \hfill & e \hfill & \alpha \hfill & \alpha \hfill \\ {{d_{91}}} \hfill & {{d_{92}}} \hfill & {{d_{93}}} \hfill & {{d_{94}}} \hfill & {{e_{91}}} \hfill & {{e_{92}}} \hfill & {{e_{93}}} \hfill & {{e_{94}}} \hfill & {{\alpha_{91}}} \hfill & {{\alpha_{92}}} \hfill \\ {{d_{101}}} \hfill & {{d_{102}}} \hfill & {{d_{103}}} \hfill & {{d_{104}}} \hfill & {{e_{101}}} \hfill & {{e_{102}}} \hfill & {{e_{103}}} \hfill & {{e_{104}}} \hfill & {{\alpha_{101}}} \hfill & {{\alpha_{102}}} \hfill \\ \end{array} } \right]^{ - 1}} \times \left[ {\begin{array}{*{20}{c}} { - {P_0}} \hfill \\ 0 \hfill \\ 0 \hfill \\ 0 \hfill \\ 0 \hfill \\ 0 \hfill \\ 0 \hfill \\ 0 \hfill \\ {r_0^2{{{{P_0}}} \left/ {2} \right.}} \hfill \\ 0 \hfill \\ \end{array} } \right]. $$

The nonzero entries of the quadratic matrix are calculated the boundary conditions given below for k ∈ [1, w], where w = n L  + n C +1.

Internal pressure condition:

$$ {A_{KK}} = C_{23}^K + {\beta^K}C_{33}^K{\left( {{r^K}} \right)^{ - {\beta^K} - 1}},{A_{Kn - 1}} = C_{23}^K + {\beta^K}C_{33}^K{\left( {{r^K}} \right)^{ - {\beta^K} - 1}}. $$

If βK = 1, else

$$ {A_{K2n + 1}} = C_{31}^k + \frac{{N_2^K}}{2}C_{32}^K\log {r^K} + C_{33}^K\log {r^{K + 1}},{A_{K2n + 2}} = \left[ {C_{36}^K + \alpha_2^K\left( {C_{32}^K + 2C_{33}^K} \right)} \right]{r^K}; $$

If βK ≠ 1, else

$$ {A_{K,2n - 1}} = \left( {C_{23}^K + C_{33}^k} \right){\alpha^k} + C_{13}^k,{A_{K2n + 2}} = \left[ {C_{36}^K + \alpha_2^K\left( {C_{23}^K + 2C_{33}^K} \right)} \right]{r^K}. $$

Displacement continuity condition:

$$ {A_{K,K - 1}} = {\left( {{r^K}} \right)^{{\beta^{K - 1}}}},{A_{K,K}} = {\left( {{r^K}} \right)^{{\beta^K}}},{A_{K,K + n - 1}} = {\left( {{r^K}} \right)^{ - {\beta^{K - 1}}}},{A_{K,K + n}} = {\left( {{r^K}} \right)^{ - {\beta^{k1}}}}. $$

If βK−1 = 1 and βK = 1, then

$$ {A_{K,2n + 1}} = {R^K}\log {r^K}{{{\left( {N_2^{K - 1} - N_2^K} \right)}} \left/ {2} \right.},{A_{K,2n + 2}} = \left( {\alpha_2^{K - 1} - \alpha_2^K} \right){\left( {{r^K}} \right)^2}. $$

If βK−1 = 1 and βK ≠ 1, then

$$ {A_{K,2n + 1}} = {R^K}\log {r^K}{{{\left( {N_2^{K - 1}} \right)}} \left/ {{2 - \alpha_1^K{r^K}}} \right.},{A_{K,2n + 2}} = \left( {\alpha_2^{K - 1} - \alpha_2^K} \right){\left( {{r^K}} \right)^2}. $$

If βK−1 ≠ 1 and βK = 1, then

$$ {A_{K,2n + 1}} = \alpha_1^K{r^K} - {r^K}\lg {r^K}\frac{{{N^K}}}{2},{A_{K,2n + 2}} = \alpha_2^K{r^K} - \alpha_2^4{\left( {{r^K}} \right)^2}. $$

If βK−1 ≠ 1 and βK ≠ 1, then

$$ {A_{K,2n + 1}} = \left( {\alpha_2^{K - 1} - \alpha_1^K} \right){r^K},{A_{K,2n + 1}} = \left( {\alpha_2^{K - 1} - \alpha_1^K} \right){\left( {{r^K}} \right)^2}. $$

Strain continuity condition:

$$ \begin{array}{*{20}{c}} {{A_{n + K,K}} = \left( {C_{23}^K + {\beta^K}C_{33}^K} \right){{\left( {{r^{K + 1}}} \right)}^{{\beta^{K - 1}}}},{A_{n + K,K + 1}} = \left( {C_{23}^{K + 1} + {\beta^{K + 1}}C_{33}^{K + 1}} \right){{\left( {{r^{K + 1}}} \right)}^{{\beta^{K - 1}} - 1}},} \\ {{A_{n + K,n + K}} = \left( {C_{23}^K - {\beta^K}C_{33}^K} \right){{\left( {{r^K}} \right)}^{ - {\beta^K} - 1}},{A_{n + K,K + n + 1}} = - \left( {C_{23}^{K + 1} - {\beta^{K + 1}}C_{33}^{K + 1}} \right){{\left( {{r^{K + 1}}} \right)}^{ - {\beta^{K - 1}} - 1}}.} \\ \end{array} $$

If βK = 1 and βK+1 = 1, then

$$ \begin{array}{*{20}{c}} {{A_{n + K,2n + 1}} = \left[ {C_{31}^K + \frac{{N_2^K}}{2}\left( {C_{32}^K\log {r^{K + 1}} + C_{33}^{K + 1}\left( {\log {r^{K + 1}} + 1} \right)} \right)} \right] - \left[ {C_{31}^{K + 1} + \frac{{N_2^K}}{2}\left( {C_{32}^{K + 1}\log {r^{K + 1}} + C_{33}^{K + 1}\left( {\log {r^{K + 1}} + 1} \right)} \right)} \right],} \\ {{A_{n + K,K + n + 2}} = {r^{K + 1}}\left[ {\left( {C_{63}^K - C_{63}^{K + 1}} \right) + \alpha_2^K\left( {C_{32}^K - C_{32}^{K + 1}} \right) + 2\left( {C_{33}^K - C_{33}^{K + 1}} \right)} \right].} \\ \end{array} $$

If βK = 1 and βK+1 ≠ 1

$$ \begin{array}{*{20}{c}} {{A_{n + K,2n + 1}} = C_{31}^K + \frac{{N_2^K}}{2}\left[ {C_{23}^K\log {r^{K + 1}} + C_{33}^K\log \left( {{r^{K + 1}} + 1} \right)} \right] - \left[ {C_{13}^{K + 1} + \alpha_1^K\left( {C_{23}^{K + 1} + C_{33}^{K + 1}} \right)} \right],} \\ {{A_{n + K,K + n + 2}} = \left\{ {\left[ {C_{63}^K + \alpha_2^K\left( {C_{32}^K + 2C_{33}^{K + 1}} \right)} \right] - \left[ {C_{63}^{K + 1} + \alpha_2^{K + 1}\left( {C_{32}^{K + 1} + 2C_{33}^{K + 1}} \right)} \right]} \right\}{r^{K + 1}}.} \\ \end{array} $$

If βK ≠ 1 and βK+1 = 1, then

$$ \begin{array}{*{20}{c}} {{A_{n + K,2n + 1}} = C_{13}^K + {\alpha^K}\left( {C_{23}^K + C_{33}^K} \right) - C_{32}^{K + 1} + \frac{{N_N^{K + 1}}}{2}C_{32}^{K + 1}\log {r^{K + 1}} + C_{33}^{K + 1}\log \left( {{r^{K + 1}} + 1} \right),} \\ {{A_{n + K,K + n + 2}} = \left\{ {\left[ {C_{63}^K + \alpha_2^K\left( {C_{32}^K + 2C_{33}^K} \right)} \right] - \left[ {C_{63}^{K + 1} + \alpha_2^{K + 1}\left( {C_{32}^{K + 1} + 2C_{33}^{K + 1}} \right)} \right]} \right\}{r^{K + 1}}.} \\ \end{array} $$

If βK ≠ 1 and βK+1 ≠ 1, then

$$ \begin{array}{*{20}{c}} {{A_{n + K,2n + 2}} = C_{13}^K - C_{13}^{K + 1} + \alpha_1^K\left( {C_{23}^K + C_{33}^K} \right) - \alpha_1^{K + 1}\left( {C_{23}^{K + 1} + C_{33}^{K + 1}} \right),} \\ {{A_{n + K,2n + 2}} = \left[ {\left( {C_{36}^K - C_{36}^{K + 1}} \right) + \alpha_2^K\left( {C_{23}^K - 2C_{33}^K} \right) - \alpha_2^{K + 1}\left( {C_{23}^{K + 1} + 2C_{33}^{K + 1}} \right)} \right]{r^{K + 1}}.} \\ \end{array} $$

External pressure condition:

$$ \begin{array}{*{20}{c}} {{A_{2n,K}} = \left( {C_{23}^n + {\beta^n}C_{33}^n} \right){{\left( {{r^{n + 1}}} \right)}^{{\beta^n} - 1}},{A_{2n,2n}} = \left( {C_{23}^n - {\beta^n}C_{33}^n} \right){{\left( {{r^{n + 1}}} \right)}^{{\beta^n} - 1}},} \\ {{A_{2n,2n + 1}} = C_{13}^n + \alpha_1^n\left( {C_{23}^n + C_{33}^n} \right),{A_{2n,2n + 2}} = \left[ {C_{36}^n + \alpha_1^n\left( {C_{23}^n + C_{33}^n} \right)} \right]{r^{n + 1}}.} \\ \end{array} $$

The axial equilibrium condition:

If βK = 1, then

$$ \begin{array}{*{20}{c}} {{A_{2n + 1,K}} = \left[ {{{\left( {{r^{K + 1}}} \right)}^2} + {{\left( {{r^K}} \right)}^2}} \right]\frac{{C_{12}^K + C_{13}^K}}{2},{A_{2n + 1,K + n}} = \left( {\log {r^{K + 1}} - \log {r^{K + 1}}} \right)\left( {C_{12}^K - C_{13}^K} \right),} \\ {{A_{2n + 1,K + 2}} = \sum\limits_{K = 1}^{K = n} {C_{11}^K\frac{{{{\left( {{r^{K + 1}}} \right)}^2}}}{2} + C_{12}^K\frac{{{N_2}}}{4} \cdot \frac{1}{2}{{\left( {{r^{K + 1}}} \right)}^2}\left( {\log {r^{K + 1}} - \frac{1}{2}} \right) + C_{13}^K\frac{{{N_2}}}{2} \cdot \frac{1}{2}{{\left( {{r^{K + 1}}} \right)}^2}\left[ {\left( {\log {r^{k + 1}}} \right) + \frac{1}{2}} \right]} } \\ { - C_{11}^K{{\left( {{r^{K + 1}}} \right)}^2} + C_{12}^K\frac{{{N_2}}}{2}{{\left( {{r^K}} \right)}^2}\left( {\log {r^K} - \frac{1}{4}} \right) + C_{13}^K\frac{{{N_2}}}{2}{{\left( {{r^K}} \right)}^2}\left( {\log {r^K} - \frac{1}{4}} \right) + C_{13}^K\frac{{{N_2}}}{2} \cdot \frac{1}{2}{{\left( {{r^K}} \right)}^2}\left[ {2\log {{\left( {{r^K}} \right)}^2} + \frac{1}{2}} \right],} \\ {{A_{2n + 1,2n + K}} = \sum\limits_{k = 1}^{k = n} {\left[ {r{{\left( {{R^{K + 1}}} \right)}^3} - {{\left( {{R^K}} \right)}^3}} \right]\alpha_2^K\left( {C_{12}^K + 2C_{13}^K} \right) + C_{16}^K.} } \\ \end{array} $$

If βK ≠ 1, then

$$ \begin{array}{*{20}{c}} {{A_{2n + 1,K}} = \left( {C_{12}^K + {\beta^K}C_{13}^K} \right)\frac{{{{\left( {{r^{K + 1}}} \right)}^{{\beta^K} + 1}} - {{\left( {{r^K}} \right)}^{{\beta^K} - 1}}}}{{1 + {\beta^K}}},} \\ {{A_{2n + 1,K + n}} = \left( {C_{12}^K - {\beta^K}C_{13}^K} \right)\frac{{{{\left( {{r^{K + 1}}} \right)}^{ - {\beta^K} + 1}} - {{\left( {{r^K}} \right)}^{ - {\beta^K} - 1}}}}{{1 - {\beta^K}}},} \\ {{A_{2n + 1,2n + 1}} = \sum\limits_{K = 1}^{K = n} {\left[ {C_{11}^K + \alpha_1^K\left( {C_{12}^K + C_{13}^K} \right)} \right]\frac{{{{\left( {{r^{K + 1}}} \right)}^2} - {{\left( {{r^K}} \right)}^2}}}{2},} } \\ {{A_{2n + 1,K + n}} = \sum\limits_{K = 1}^{k = n} {\left( {C_{16}^K + \alpha_2^KC_{12}^K + 2C_{13}^K} \right)\frac{{{{\left( {{r^{K + 1}}} \right)}^3} - {{\left( {{r^K}} \right)}^3}}}{3}.} } \\ \end{array} $$

The zero torsion condition:

If βK = 1, then

$$ \begin{array}{*{20}{c}} {{A_{2n + 2,K}} = \left[ {{{\left( {{r^{K + 1}}} \right)}^3} - {{\left( {{r^K}} \right)}^3}} \right]\frac{{C_{62}^K + C_{63}^K}}{3},{A_{2n + 2,K + n}} = \left( {{r^{K + 1}} - {r^K}} \right)\left( {C_{62}^K - C_{63}^K} \right),} \\ {{A_{2n + 2,2n + 1}} = \sum\limits_{k = 1}^{k = n} {c_{61}^k\frac{{{{\left( {{R^{K + 1}}} \right)}^3}}}{3} + \frac{{N_2^K}}{2} \cdot \frac{1}{3}{{\left( {{r^{K + 1}}} \right)}^3}\left[ {C_{62}^K\left( {\log {r^{K + 1}} - \frac{1}{3}} \right) + C_{63}^K\frac{1}{3}\left( {\log {r^{K + 1}} + \frac{2}{3}} \right)} \right]} } \\ { - \left\{ {C_{61}^K{{\left( {{r^K}} \right)}^3} + \frac{{N_2^K}}{2} \cdot \frac{1}{3}{{\left( {{r^K}} \right)}^3}\left[ {C_{26}^K\left( {\log {r^K} - \frac{1}{3}} \right) + C_{63}^K\left( {\log {r^K} + \frac{2}{3}} \right)} \right]} \right\},} \\ {{A_{2n + 2,2n + 2}} = \sum\limits_{K = 1}^{K = n} {C_{66}^K + \alpha_2^K\left( {C_{62}^K + 2C_{63}^K} \right)\frac{{{{\left( {{R^K}} \right)}^4} - {{\left( {{r^K}} \right)}^4}}}{4}.} } \\ \end{array} $$

If βK ≠ 1, then

$$ \begin{array}{*{20}{c}} {{A_{2n + 2,K + n}} = \left( {C_{26}^K + {\beta^K}C_{36}^K} \right)\frac{{{{\left( {{r^{K + 1}}} \right)}^{{\beta^K} + 2}} + {{\left( {{r^K}} \right)}^{{\beta^K} + 2}}}}{{2 + {\beta^K}}},} \\ {{A_{2n + 2,K + n}} = \left( {C_{26}^K - {\beta^K}C_{36}^K} \right)\frac{{{{\left( {{r^{K + 1}}} \right)}^{ - {\beta^K} + 2}} + {{\left( {{r^K}} \right)}^{ - {\beta^K} + 2}}}}{{2 - {\beta^K}}},} \\ {{A_{2n + 2,2n + 1}} = \sum\limits_{K = 1}^{K = n} {\left[ {C_{16}^K + \alpha_1^K\left( {C_{26}^K + C_{36}^K} \right)} \right]\frac{{{{\left( {{r^{K + 1}}} \right)}^3} - {{\left( {{r^K}} \right)}^3}}}{3},} } \\ {{A_{2n + 2,2n + 1}} = \sum\limits_{K = 1}^{K = n} {\left[ {C_{66}^K + \alpha_1^K\left( {C_{26}^K + 2C_{36}^K} \right)} \right]\frac{{{{\left( {{r^{K + 1}}} \right)}^4} - {{\left( {{r^K}} \right)}^4}}}{4}.} } \\ \end{array} $$

The strains are given by:

If βK ≠ 1, then

$$ \begin{array}{*{20}{c}} {\varepsilon_r^k = {D^k}\left( {{\beta^k} - 1} \right){r^{{\beta^k} - 1}} + {E^k}\left( { - {\beta^K} - 1} \right){r^{ - {\beta^k} - 1}} + \alpha_2^k{\varepsilon_0} + \frac{{{N_4}}}{2}{\gamma_0}\left[ {\frac{1}{3}{{\left( {{r^k}} \right)}^3}\ln r - \frac{1}{9}{{\left( {{r^k}} \right)}^k}} \right],} \\ {\varepsilon_\theta^k = {D^k}{r^{{\beta^k} - 1}} + {E^k}{r^{ - {\beta^k} - 1}} + \alpha_2^k{\varepsilon_0} + \frac{{{N_4}}}{2}{\gamma_0}{r^k}\ln {r^k}.} \\ \end{array} $$

If βK =1, then

$$ \begin{array}{*{20}{c}} {\varepsilon_r^k = {D^k}{\beta^k}{r^{{\beta^r} - 1}} + {E^k}\left( { - {\beta^k}} \right){r^{ - {\beta^k} - 1}} + \alpha_2^k{\varepsilon_0} + 2\alpha_4^k{\gamma_0}{r_0},} \\ {\varepsilon_\theta^k = {D^k}{r^{{\beta^r} - 1}} + {E^k}{r^{ - {\beta^k} - 1}} + \alpha_2^k{\varepsilon_0} + \alpha_4^k{\gamma_0}{r_0}.} \\ \end{array} $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghouaoula, A., Hocine, A., Chapelle, D. et al. Analytical prediction of damage in the composite part of a type-3 hydrogen storage vessel. Mech Compos Mater 48, 77–88 (2012). https://doi.org/10.1007/s11029-012-9253-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-012-9253-y

Keywords

Navigation