Skip to main content
Log in

Analysis of the static response of cross-ply simply supported plates and shells based on a higher-order theory

  • Published:
Mechanics of Composite Materials Aims and scope

The boundary-discontinuous double Fourier series-based solution methodology is used to solve the problem of higher-order shear deformation of cross-ply plates and doubly curved panels, which are characterized by a system of five highly coupled linear partial differential equations with mixed-type simply supported boundary conditions prescribed at all four their edges. The present solution is related to a number of unsolved boundary-value problems and can serve as a tool in particular for early design stages and for benchmark comparisons and verifications of numerical results. The analytical results obtained are compared with finite-element calculations, and a good agreement is found to exist between them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. E. W. Hobson, The Theory of Functions of a Real Variable, Vol. II, 2nd Edition, Harren Press (1950).

  2. S. Goldstein, The Stability of Viscous Fluid Flow Under Pressure Between Parallel Planes, in: Proceedings of Cambridge Philosophical Society 32, (1936), 40-55.

  3. S. Goldstein, The Stability of Viscous Fluid Flow Between Rotating Cylinders, in: Proc. of Cambridge Philosophical Soc., 33, 41-55 (1937).

  4. A. S. Oktem, The Effect of Boundary Conditions on the Response of Laminated Thick Composite Plates and Shells, Ph.D. Dissertation, University of Utah, Salt Lake City, USA (2005).

  5. R. A. Chaudhuri, “On boundary-discontinuous double Fourier series solution to a system of completely coupled P.D.E.’s.,” Int. J. Eng. Sci., 27(9), 1005-1022 (1989).

    Article  Google Scholar 

  6. R. A. Chaudhuri, “On the roles of complementary and admissible boundary constraints in Fourier solutions to boundary-value problems of completely coupled rth order P.D.E.’s.,” J. Sound Vibrat., 251, 261–313 (2002).

    Article  Google Scholar 

  7. R. A. Chaudhuri and H. R. H. Kabir, “A boundary-continuous-displacement based Fourier analysis of laminated doublycurved panels using classical shallow shell theories,” Int. J. Eng. Sci., 30, 1647-1664 (1992).

    Article  Google Scholar 

  8. R. A. Chaudhuri and H. R. H. Kabir, “Static and dynamic analysis of finite general cross-ply doubly-curved panels using classical shallow shell theories,” Compos. Struct., 28, 73-91 (1994).

    Article  Google Scholar 

  9. A. S. Oktem and R. A. Chaudhuri, “Levy type Fourier analysis of thick cross-ply doubly-curved panels,” Compos. Struct., 80, 475-488 (2007).

    Article  Google Scholar 

  10. Oktem, A. S. and R. A. Chaudhuri, “Fourier analysis of thick cross-ply Levy type clamped doubly-curved panels,” Compos. Struct., 80, 489-503 (2007).

    Article  Google Scholar 

  11. A. S. Oktem and R. A. Chaudhuri, “Higher-order theory based boundary-discontinuous Fourier analysis of simply supported thick cross-ply doubly curved panels,” Compos. Struct., 89, 448-458 (2009).

    Article  Google Scholar 

  12. A. S. Oktem and C. Guedes Soares, “Boundary discontinuous Fourier solution for plates and doubly curved panels using a higher order theory,” Compos. Part B: Eng., 42(4), 842-850 (2011).

    Article  Google Scholar 

  13. J. N. Reddy and C. F. Liu, “A higher-order shear deformation theory of laminated elastic shells,” Int. J. Eng. Sci., 23, 319-330 (1985).

    Article  Google Scholar 

Download references

Acknowledgment

The first author was financed by the Portuguese Foundation of Science and Technology under the contract number SFRH/BPD/47687/2008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Guedes Soares.

Additional information

Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 48, No. 1, pp. 95-110, January-February, 2012.

 

 

$$ \begin{array}{*{20}{c}} {{a_1} = \frac{{{A_{11}}}}{{{R_1}}} + \frac{{{A_{12}}}}{{{R_2}}},\;{a_2} = {B_{11}} - \frac{{4{E_{11}}}}{{3{h^2}}},\;{a_3} = {B_{12}} - \frac{{4{E_{12}}}}{{3{h^2}}},\;{a_4} = \frac{{4{E_{11}}}}{{3{h^2}}},\;{a_5} = \frac{{4{E_{12}}}}{{3{h^2}}},\;{a_6} = \frac{{{A_{12}}}}{{{R_1}}} + \frac{{{A_{22}}}}{{{R_2}}},} \\ {{a_7} = {B_{22}} - \frac{{4{E_{22}}}}{{3{h^2}}},\;{a_8} = \frac{{4{E_{22}}}}{{3{h^2}}},\;{a_9} = {B_{66}} - \frac{{4{E_{66}}}}{{3{h^2}}},\;{a_{10}} = \frac{{8{E_{66}}}}{{3{h^2}}};} \\ \end{array} $$
$$ \begin{array}{*{20}{c}} {{b_1} = \frac{{{B_{11}}}}{{{R_1}}} + \frac{{{B_{12}}}}{{{R_2}}},\;{b_2} = {D_{11}} - \frac{{4{F_{11}}}}{{3{h^2}}},\;{b_3} = {D_{12}} - \frac{{4{F_{12}}}}{{3{h^2}}},\;{b_4} = \frac{{4{F_{11}}}}{{3{h^2}}},\;{b_5} = \frac{{4{F_{12}}}}{{3{h^2}}},\;{b_6} = \frac{{{B_{12}}}}{{{R_1}}} + \frac{{{B_{22}}}}{{{R_2}}},\;{b_7} = {D_{22}} - \frac{{4{F_{22}}}}{{3{h^2}}},} \\ {\;{b_8} = \frac{{4{F_{22}}}}{{3{h^2}}},\;{b_9} = {D_{66}} - \frac{{4{F_{66}}}}{{3{h^2}}},\;{b_{10}} = \frac{{8{F_{66}}}}{{3{h^2}}},\;{b_{11}} = \frac{{{E_{11}}}}{{{R_1}}} + \frac{{{E_{12}}}}{{{R_2}}},\;{b_{12}} = {F_{11}} - \frac{{4{H_{11}}}}{{3{h^2}}},\;{b_{13}} = {F_{12}} - \frac{{4{H_{12}}}}{{3{h^2}}},\;{b_{14}} = \frac{{4{H_{11}}}}{{3{h^2}}};} \\ {{b_{15}} = \frac{{4{H_{12}}}}{{3{h^2}}},\;{b_{16}} = {F_{22}} - \frac{{4{H_{22}}}}{{3{h^2}}},\;{b_{17}} = \frac{{4{H_{22}}}}{{3{h^2}}},\;{b_{18}} = \frac{{4{H_{66}}}}{{3{h^2}}},\;{b_{19}} = \frac{{8{H_{12}}}}{{3{h^2}}};} \\ \end{array} $$
$$ {d_1} = {A_{44}} - \frac{{4{D_{44}}}}{{{h^2}}},\;{d_2} = {A_{55}} - \frac{{4{D_{55}}}}{{{h^2}}},\;{d_3} = {D_{44}} - \frac{{4{F_{44}}}}{{{h^2}}},\;{d_4} = {D_{55}} - \frac{{4{F_{55}}}}{{{h^2}}}; $$
$$ \begin{array}{*{20}{c}} {{e_1} = {B_{12}} + {B_{66}} - \frac{{4{E_{12}}}}{{3{h^2}}} - \frac{{4{E_{66}}}}{{3{h^2}}},\;{e_2} = {b_1} - {d_2} + \frac{{4{D_4}}}{{{h^2}}} - \frac{{4{B_{11}}}}{{3{h^2}}},\;{e_3} = {b_2} - \frac{{4{b_{12}}}}{{3{h^2}}},\;{e_4} = {b_3} + {b_9} - \frac{{4{b_{13}}}}{{3{h^2}}} - \frac{{4{b_{18}}}}{{3{h^2}}},\;{e_5} = {b_9} - \frac{{4{b_{18}}}}{{3{h^2}}},} \\ {{e_6} = - {b_4} + \frac{{4{b_{14}}}}{{3{h^2}}},\;{e_7} = - {b_5} - {b_{10}} + \frac{{4{b_{15}}}}{{3{h^2}}} + \frac{{4{b_{19}}}}{{3{h^2}}},\;{e_8} = - {d_2} + \frac{{4{d_4}}}{{{h^2}}},\;{e_9} = {b_7} - \frac{{4{b_{16}}}}{{3{h^2}}},\;{e_{10}} = {b_8} + \frac{{4{b_{17}}}}{{3{h^2}}},} \\ {{e_{11}} = - {d_1} + \frac{{4{d_3}}}{{{h^2}}},\;{e_{12}} = {b_6} - {d_1} + \frac{{4{d_3}}}{{{h^2}}} - \frac{{4{b_{20}}}}{{3{h^2}}};} \\ \end{array} $$
$$ \begin{array}{*{20}{c}} {{f_1} = {A_{12}} + {A_{66}},\;{f_2} = {a_3} + {a_9},\;{f_3} = - {a_{10}} - {a_5},\;{f_4} = {d_2} - \frac{{4{d_4}}}{{{h^2}}} - \frac{{{a_2}}}{{{R_1}}} - \frac{{{a_3}}}{{{R_2}}},\;{f_5} = {d_1} - \frac{{4{d_3}}}{{{h^2}}} - \frac{{{a_3}}}{{{R_1}}} - \frac{{{a_7}}}{{{R_2}}},} \\ {{f_6} = {f_2} - \frac{{4{d_4}}}{{{h^2}}} + \frac{{4{b_{11}}}}{{3{h^2}}} + \frac{{{a_4}}}{{{R_1}}} + \frac{{{a_5}}}{{{R_2}}},\;{f_7} = {d_1} - \frac{{4{d_3}}}{{{h^2}}} + \frac{{4{b_{20}}}}{{3{h^2}}} + \frac{{{a_5}}}{{{R_1}}} + \frac{{{a_8}}}{{{R_2}}},\;{f_8} = \frac{{4{E_{12}}}}{{3{h^2}}} + \frac{{8{E_{66}}}}{{3{h^2}}},\;{f_9} = \frac{{4{b_{12}}}}{{3{h^2}}},\;{f_{10}} = \frac{{4{b_{13}}}}{{3{h^2}}} + \frac{{8{b_{18}}}}{{3{h^2}}},} \\ {{f_{11}} = \frac{{4{b_{14}}}}{{3{h^2}}},\;{f_{12}} = \frac{{8{b_{15}}}}{{3{h^2}}} - \frac{{8{b_{19}}}}{{3{h^2}}},\;{f_{13}} = \frac{{4{b_{16}}}}{{3{h^2}}},\;{f_{14}} = \frac{{4{b_{17}}}}{{3{h^2}}},\;{f_{15}} = \frac{{{a_1}}}{{{R_1}}} - \frac{{{a_6}}}{{{R_2}}}.} \\ \end{array} $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oktem, A.S., Soares, C.G. Analysis of the static response of cross-ply simply supported plates and shells based on a higher-order theory. Mech Compos Mater 48, 65–76 (2012). https://doi.org/10.1007/s11029-012-9252-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-012-9252-z

Keywords

Navigation