Skip to main content
Log in

Influence of flow-induced deformations of fabrics on the formation and transport of bubbles during liquid moulding processes

  • Published:
Mechanics of Composite Materials Aims and scope

The viscous flow-induced deformation of non-crimp fabrics during liquid moulding processes, such as resin transfer moulding, and its influence on the creation of bubbles behind the liquid front are studied. A transverse flow with a low Reynolds number through random arrays of aligned cylinders is considered with account of changes in the transverse permeability of fibre bundles. A combined methodology of directly solving the two-dimensional Navier–Stokes equations for the flow in the vicinity of a single fibre and minimization of the dissipation rate in a system of fibres is employed. Sethian’s level set method is used for transient calculations of the motion of the liquid-gas front, at which the capillary pressure is accounted for. The continuity is maintained, and local correlations between the dimensions of neighbouring gaps formed between bundles are used. The elastic deformations of the fibre bundles are calculated based on micromechanical analyses. The void fractions of inter-and intrabundle bubbles obtained differ for deformable and non-deformable fabrics, but both the cases compare well with those from real mouldings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. S. Leclerc and E. Ruiz, “Porosity reduction using optimized flow velocity in resin transfer molding,” Composites. Part A, 39, No. 12, 1859–1868 (2008).

    Article  Google Scholar 

  2. K. M. Pillai, “Modeling the unsaturated flow in liquid composite molding processes: A review and some thoughts,” J. Compos. Mater., 38, No. 23, 2097–2118 (2004).

    Article  CAS  Google Scholar 

  3. B. D. Marjavaara, S. Ebermark, and T. S. Lundström, “Compression moulding simulations of SMC using a multiobjective surrogate-based inverse modeling approach,” Mech. Compos. Mater., 45, No. 5, 503–514 (2009).

    Article  Google Scholar 

  4. N. E. J. Olsson, T. S. Lundström, and K. Olofsson, “A design of experimental study of compression moulding of SMC,” Plastics, Rubber Compos., 38, Nos. 9/10, 426–431 (2009).

    Article  CAS  Google Scholar 

  5. T. S. Lundström, V. Frishfelds, and A. Jakovics, “Bubble formation and motion in non-crimp fabrics with a perturbed bundle geometry,” Composites. Part A, 41, 83–92 (2010).

    Article  Google Scholar 

  6. H. L. Liu and W. R. Hwang, “Transient filling simulations in unidirectional fibrous porous media,” Korea-Australia Rheology J., 21, No. 1, 71–79 (2009).

    Google Scholar 

  7. H. M. Andersson, T. S. Lundström, B. R. Gebart, and R. Langström, “Flow enhancing layers in the vacuum infusion process,” Polym. Compos., 23, No. 5, 895–901 (2002).

    Article  CAS  Google Scholar 

  8. H. M. Andersson, T. S. Lundström, and B. R. Gebart, “Numerical model for vacuum infusion manufacturing of polymer composites,” Numer. Meth. Heat Fluid Flow, 13, No. 3, 383–394 (2003).

    Article  CAS  Google Scholar 

  9. H. M. Andersson, T. S. Lundström, and N. Langhans, “Computational fluid dynamics applied to the vacuum infusion process,” Polym. Compos., 26, 231–239 (2005).

    Article  CAS  Google Scholar 

  10. R. S. Parnas, A. J. Salem, T. A. Sadiq, H. P. Wang, and S. G. Advani, “Interaction between micro-and macroscopic flows in RTM preforms,” Compos. Struct., 27, 93–107 (1994).

    Article  Google Scholar 

  11. T. S. Lundström and B. R. Gebart, “Influence from process parameters on void formation in resin transfer molding,” Polym. Compos., 15, 25–33 (1994).

    Article  Google Scholar 

  12. T. S. Lundström, H. Gustavsson, N. Jekabsons, and A. Jakovics, “Dynamics of wicking during filling of multi-scale porous media: Porous pore-doublet model, experiments and theory,” AIChE J., 54, 372–380 (2008).

    Article  Google Scholar 

  13. T. S. Lundström, “The permeability of non-crimp-stitched fabrics,” Composites. Part A, 31, 1345–1353 (2000).

    Article  Google Scholar 

  14. T. S. Lundström, B. R. Gebart, and C. Y. Lundemo, “Void formation in RTM,” J. Reinf. Plastics Compos., 12, 1340–1349 (1993).

    Google Scholar 

  15. N. Patel and L. J. Lee, “Effects of fiber mat architecture on void formation and removal in liquid composite molding,” Polym. Compos., 16, 386–399 (1995).

    Article  CAS  Google Scholar 

  16. D. H. Lee, W. I. Lee, and M. K. Kang, “Analysis and minimization of void formation during resin transfer molding process,” Compos. Sci. Technol., 66, 3281–3289 (2006).

    Article  CAS  Google Scholar 

  17. Y. K. Hamidi, L. Aktas, and M. C. Altan, “Effect of packing on void morphology in resin transfer molded E-glass/epoxy composites,” Polym. Compos., 26, 614–627 (2005).

    Article  CAS  Google Scholar 

  18. F. Desplentere, S. V. Lomov, D. L. Woerdeman, et al., “Micro-CT characterization of variability in 3D textile architecture,” Compos. Sci. Technol., 65, No. 13, 1920–1930 (2005).

    Article  Google Scholar 

  19. F. Zhou, J. Alms, and S. G. Advani, “A closed form solution for flow in dual scale fibrous porous media under constant injection pressure conditions,” Compos. Sci. Technol., 68, Nos. 3–4, 699–708 (2008).

    Article  CAS  Google Scholar 

  20. J. G. I. Hellström, V. Frishfelds, and T. S. Lundström, “Mechanisms of flow-induced deformations of porous media,” J. Fluid Mech., 664, 220–237 (2010).

    Article  Google Scholar 

  21. V. Frishfelds, T. S. Lundström, and A. Jakovics, “Bubble motion through non-crimp fabrics during composites manufacturing,” Composites. Part A, 39, No. 2, 243–251 (2008).

    Article  Google Scholar 

  22. R. S. Parnas and S. M. Walsh, “Vacuum-assisted resin transfer molding model,” Polym. Compos., 26, 477–485 (2005).

    Article  CAS  Google Scholar 

  23. B. Gourichon, M. Deleglise, C. Binetruy, and P. Krawczak, “Dynamic void content prediction during radial injection in liquid composite molding,” Composites. Part A, 39, No. 1, 46–55 (2008).

    Article  Google Scholar 

  24. J. S. U. Schell, M. Deleglise, C. Binetruy, P. Krawczak, and P. Ermanni, “Numerical prediction and experimental characterisation of mesoscale voids in liquid composite moulding,” Composites. Part A, 38, No. 12, 2460–2470 (2007).

    Article  Google Scholar 

  25. P. Simacek and S. G. Advani, “Modeling resin flow and fiber tow saturation induced by distribution media collapse in VARTM,” Compos. Sci. Technol., 67, No. 13, 2757–2769 (2007).

    Article  CAS  Google Scholar 

  26. T. S. Lundström, V. Frishfelds, and A. Jakovics, “A statistical approach to permeability of clustered fibre reinforcements,” J. Compos. Mater., 38, No. 13, 1137–1149 (2004).

    Article  Google Scholar 

  27. V. Frishfelds, T. S. Lundström, and A. Jakovics, “Automatic recognition and analysis of scanned non-crimp fabrics for calculation of their fluid flow permeability,” J. Reinf. Plastics Compos., 26, No. 3, 285–296 (2007).

    Article  CAS  Google Scholar 

  28. V. Frishfelds, T. S. Lundström, and A. Jakovics, “Permeability of clustered fibre networks: modelling of the unit cell,” Mech. Compos. Mater., 39, No. 3, 265–272 (2003).

    Article  CAS  Google Scholar 

  29. M. Nordlund, T. S. Lundström, V. Frishfelds, and A. Jakovics, “Permeability network model to non-crimp fabrics,” Composites. Part A, 37, 826–835 (2006).

    Article  Google Scholar 

  30. T. S. Lundström and B. R. Gebart, “Effect of perturbation of fibre architecture on the permeability inside fibre tows,” J. Compos. Mater., 29, 424–443 (1995).

    Article  Google Scholar 

  31. S. G. Advani and Z. Dimitrova, “Role of a capillary-driven flow in composite manufacturing,” in: S. Hartland (ed.), Surface and Interfacial Tension: Measurement, Theory, and Applications, Marcel Dekker Inc., New York (2004), pp. 263–311.

    Google Scholar 

  32. V. Frishfelds, T. S. Lundström, and A. Jakovics, “Lattice-gas analysis of fluid front in non-crimp fabrics,” Transport in Porous Media, 84, No. 1, 75–93 (2010).

    Article  CAS  Google Scholar 

  33. J. A. Sethian and P. Smereka, “Level set methods for fluid interfaces,” Ann. Rev. Fluid Mech., 35, 341–372 (2003).

    Article  Google Scholar 

  34. M. S. Shih and L. W. Hourng, “Random walk approach on the study of void distribution during the resin transfer molding process,” J. Reinf. Plastics Compos., 23, No. 6, 651–680 (2004).

    Article  CAS  Google Scholar 

  35. T. S. Lundström, “Measurement of void collapse during resin transfer moulding,” Composites. Part A, 28, 201–214 (1997).

    Article  Google Scholar 

  36. J. L. Kardos, M. P. Dudukovic, and R. Dave, “Void growth and resin transport during processing of thermosetting-matrix composites,” Adv. Polym. Sci., Springer-Verlag, Berlin, 80, 101–123 (1986).

    CAS  Google Scholar 

  37. J. R. Wood and M. G. Bader, “Void control for polymer-matrix composites (1): Theoretical and experimental methods for determining the growth and collapse of gas bubbles,” Compos. Manufact., 5, 139–147 (1994).

    Article  CAS  Google Scholar 

  38. L. Zingraff, V. Michaud, P.-E. Bourban, and J.-A. E. Manson, “Resin transfer moulding of anionically polymerised polyamide,” Composites. Part A, 36, No. 12, 1675–1686 (2005).

    Article  Google Scholar 

  39. S. I. Barry, G. K. Aldis, and G. Mercer, “Injection of fluid into a layer of deformable porous medium,” Appl. Mech. Rev., 48, No. 10, 722–726 (1995).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Frishfelds.

Additional information

Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 47, No. 2, pp. 317–334, March-April, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frishfelds, V., Lundström, T.S. Influence of flow-induced deformations of fabrics on the formation and transport of bubbles during liquid moulding processes. Mech Compos Mater 47, 221–232 (2011). https://doi.org/10.1007/s11029-011-9200-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-011-9200-3

Keywords

Navigation