Skip to main content
Log in

Anisotropy of elasticity of a composite with irregularly oriented anisometric filler particles

  • Published:
Mechanics of Composite Materials Aims and scope

The effects of orientation and shape of filler particles on the elastic properties of composites have been analyzed. The elastic constants of a composite with irregularly oriented filler particles were calculated by using the method of orientational averaging of the properties of a representative structural element. The elastic constants of the structural element were found according to a known generalized Eshelby solution for a finite concentration of ellipsoidal inclusions. The diagrams of elasticity anisotropy for a transversely isotropic structural element and an orthotropic composite with irregularly oriented inclusions are presented. A quantitative estimate for the degree of anisotropy of elastic properties of composites is suggested. Data on the influence of shape anisometry of inclusions on the anisotropy coefficient of filled composites are also reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Lagzdins, R. D. Maksimov, and E. Plume, “Elasticity of composites with irregularly oriented shape-anisotropic filler particles,” Mech. Compos. Mater., 42, No. 3, 197–208 (2006).

    Article  CAS  Google Scholar 

  2. E. Plume, R. D. Maksimov, and A. Lagzdins, “Effect of anisometry of a plate like nanofiller on the elastic constants of a transversely isotropic composite,” Mech. Compos. Mater., 44, No. 4, 341–348 (2008).

    Article  CAS  Google Scholar 

  3. S. W. Tsai and N. J. Pagano, “Invariant properties of composite materials,” in: S. W. Tsai, J. C. Halpin, and N. J. Pagano (eds.), Composite Materials Work shop, Technomic Publishing Co., Stamford, Conn. (1968), p. 233.

    Google Scholar 

  4. J. C. Halpin, “Stiffness and expansion estimates for oriented short fiber composites,” J. Compos. Mater., 3, 732–734 (1969).

    Google Scholar 

  5. J. C. Halpin and N. J. Pagano, “The laminate approximation for randomly oriented fibrous composites,” J. Compos. Mater., 3, 720–724 (1969).

    Google Scholar 

  6. J. D. Eshelby, “The determination of the elastic field of an ellipsoidal inclusion, and related problems,” Proc. Roy. Soc. Ser. A, 241, 376–396 (1957).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. T. Mori and K. Tanaka, “Average stress in matrix and average elastic energy of materials with misfitting inclusions,” Acta Metall., 21, No. 5, 571–574 (1973).

    Article  Google Scholar 

  8. T. S. Chow, “Effect of particle shape at finite concentration on the elastic moduli of filled polymers,” J. Polym. Sci. Polym. Phys. Ed., 16, No. 6, 959–965 (1978).

    Article  CAS  Google Scholar 

  9. G. P. Tandon and G. J. Weng, “The effect of aspect ratio of inclusions on the elastic properties of unidirectionally aligned composites,” Polym. Compos., 5, No. 4, 327–333 (1984).

    Article  Google Scholar 

  10. G. P. Tandon and G. J. Weng, “Average stress in the matrix and effective moduli of randomly oriented composites,” Compos. Sci. Technol., 27, 111–132 (1986).

    Article  CAS  Google Scholar 

  11. T. D. Shermergor, Theory of Elasticity of Microinhomogeneous Media [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  12. R. M. Christensen, Mechanics of Composite Materials, John Wiley & Sons, New York–Chichester–Brisbane–Toronto (1979).

    Google Scholar 

  13. H. Tan, Y. Huang, C. Liu, and P. H. Geubelle, “The Mori–Tanaka method for composite materials with nonlinear interface debonding,” Int. J. Plast., 21, 1890–1918 (2005).

    Article  MATH  CAS  Google Scholar 

  14. N. Sheng, M. C. Boyce, D. M. Parks, G. C. Rutledge, J. I. Abes, and R. E. Cohen, “Multiscale micromechanical modeling of polymer/clay nanocomposites and the effective clay particle,” Polymer, 45, 487-506 (2004).

    Article  CAS  Google Scholar 

  15. G. M. Odegard, T. C. Clancy, and T. S. Gates, “Modeling of the mechanical properties of nanoparticle/polymer composites,” Polymer, 46, 553–562 (2005).

    Article  CAS  Google Scholar 

  16. Y. Benveniste, “A new approach to the application of Mori–Tanaka’s theory in composite materials,” Mech. Mater., 6, 147–157 (1987).

    Article  Google Scholar 

  17. L. H. Dai, Z. P. Huang, and R. A. Wang, “Generalized self-consis tent Mori–Tanaka scheme for prediction of the effective elastic moduli of hybrid multiphase particulate composites,” Polym. Compos., 19, No. 5, 506–513 (1998).

    Article  CAS  Google Scholar 

  18. E. Jao Jules, T. Tsujikami, S. V. Lomov, and I. Verpoest, “Effect of fibre length and fibre orientation on the predicted elastic properties of long-fibre composites,” Macromol. Symp., 17.08.2004.

  19. S. G. Lekhnitskii, Elasticity Theory of Anisotropic Bodies [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  20. A. F. Zilauts and A. F. Kreger, “Deformation surfaces of a composite material,” Mekh. Polim., No. 6, 975–981 (1976).

  21. A. F. Kreger and A. F. Zilauts, “Numerical characteristics of the degree of anisotropy of the mechanical properties of materials,” Mekh. Polim., No. 4, 601–609 (1978).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Mekhanika Kompozitnykh Materialov, Vol. 45, No. 4, pp. 507–524, July–August, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lagzdins, A., Maksimov, R.D. & Plume, E. Anisotropy of elasticity of a composite with irregularly oriented anisometric filler particles. Mech Compos Mater 45, 345–358 (2009). https://doi.org/10.1007/s11029-009-9096-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-009-9096-3

Keywords

Navigation