Skip to main content
Log in

Structural Modeling of the Mechanical Behavior of Periodic Cellular Solids: Open-Cell Structures

  • Published:
Mechanics of Composite Materials Aims and scope

Abstract

The numerical simulation of random cellular metals, e.g., metal foams, is still connected with many unsolved problems due to their stochastic structure. Therefore, a periodic model of cellular metals is developed and its mechanical behavior is investigated numerically under uniaxial and multiaxial stress states. The main advantage of the model is that a wide range of relative densities can be covered and that test specimens of the same geometry are possible to manufacture without oversimplifying their shape. The influence of different hardening behavior and different boundary conditions on the characteristics of the material is investigated. Furthermore, the effect of internal pore pressure on its uniaxial behavior and on the shape of yield surface are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. H. Hertel, Leichtbau, Berlin, Springer Verlag (1960).

    Google Scholar 

  2. C. Korner and R. F. Singer, “Processing of metal foams — challenges and opportunities,” Adv. Eng. Mater., 2, No.4, 159–165 (2000).

    Article  Google Scholar 

  3. M. F. Ashby and T. J. Lu, “Metal foams: a survey,” Sci. China, Ser. B, 46, 521–532 (2003).

    Google Scholar 

  4. M. F. Ashby, A. Evans, N. A. Fleck, L. J. Gibson, J. W. Hutchinson, and H. N. G. Wadley, Metal Foams: A Design Guide, Butterworth-Heinemann, Boston (2000).

    Google Scholar 

  5. T. Furio and M. Zoccala, The Future of Ship Doors — Lattice Block Materials (2001) (published online).

  6. M. S. Gadala, M. L. Mullins, and M. A. Dokainish, “A Modified plasticity theory for porous solids,” Int. J. Num. Meth. Eng. 15, 649–660 (1980).

    Google Scholar 

  7. R. J. Green, “A plasticity theory for porous solids,” Int. J. Mechn. Sci. 14, 215–224 (1972).

    Article  Google Scholar 

  8. A. L. Gurson, Plastic Flow and Fracture Behavior of Ductile Materials Incorporating Void Nucleation, Growth, and Interaction, PhD Thesis, Brown University (1975).

  9. D.-Z. Sun, “Micromechanical modelling of ductile damage in metals,” Tagungsband der 28, Tagung des DVM-Arbeitskreises Bruchvorgange, 287–304, Bremen (1996).

  10. V. Tvergaard, “On localization in ductile materials containing spherical voids,” Int. J. Fract. 18, 237–252 (1982).

    Google Scholar 

  11. A. Ochsner and K. Lamprecht, “On the uniaxial compression behavior of regular shaped cellular metals,” Mech. Research Comm., No. 30, 573–579 (2003).

    Google Scholar 

  12. H. Armen, “Assumptions, models, and computational methods for plasticity,” Comput. Struct. 10, 161–174 (1979).

    Article  Google Scholar 

  13. G. Backhaus, Deformationsgesetze, Akademie-Verlag, Berlin (1983).

    Google Scholar 

  14. W.-F. Chen and D. J. Hahn, Plasticity for Structural Engineers, Springer, New York (1988).

    Google Scholar 

  15. B. Klein, FEM Grundlagen und Anwendungen der Finite-Element-Methode, Friedr. Vieweg & Sohn Verlag/GWV Fachverlage GmbH, Wiesbaden (2003).

    Google Scholar 

  16. A. Ochnser, Experimentelle und numerische Untersuchung des elasto-plastischen Verhaltens zellularer Modellwerkstoffe, PhD Thesis, University Erlangen-Nuremberg (2003).

  17. T. Fiedler, Experimentelle Untersuchung zellularer Werkstoffe unter biaxialen Spannungszustanden, Student Project, University Erlangen-Nuremberg (2002).

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 41, No. 3, pp. 405–422, May–June, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fiedler, T., Ochsner, A., Gracio, J. et al. Structural Modeling of the Mechanical Behavior of Periodic Cellular Solids: Open-Cell Structures. Mech Compos Mater 41, 277–290 (2005). https://doi.org/10.1007/s11029-005-0054-4

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-005-0054-4

Keywords

Navigation