Skip to main content

Advertisement

Log in

Greenhouse gas mitigation with scarce land: The potential contribution of increased nitrogen input

  • Original Article
  • Published:
Mitigation and Adaptation Strategies for Global Change Aims and scope Submit manuscript

Abstract

Agricultural lands have been identified to mitigate greenhouse gas (GHG) emissions primarily by production of energy crops and substituting fossil energy resources and through carbon sequestration in soils. Increased fertilizer input resulting in increased yields may reduce the area needed for crop production. The surplus area could be used for energy production without affecting the land use necessary for food and feed production. We built a model to investigate the effect of changing nitrogen (N) fertilizer rates on cropping area required for a given amount of crops. We found that an increase in nitrogen fertilizer supply is only justified if GHG mitigation with additional land is higher than 9–15 t carbon dioxide equivalents per hectare (CO2-eq../ha). The mitigation potential of bioenergy production from energy crops is most often not in this range. Hence, from a GHG abatement point of view land should rather be used to produce crops at moderate fertilizer rate than to produce energy crops. This may change if farmers are forced to reduce their N input due to taxes or governmental regulations as it is the case in Denmark. However, with a fertilizer rate 10 % below the economical optimum a reduction of N input is still more effective than the production of bioenergy unless mitigation effect of the bioenergy production exceeds 7 t carbon dioxide (CO2)-eq../ha. An intensification of land use in terms of N supply to provide more land for bioenergy production can only in exceptional cases be justified to mitigate GHG emissions with bioenergy under current frame conditions in Germany and Denmark.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. GHG emissions are expressed in CO2 equivalents (CO2-eq.), based on the global warming potential according to Cherubini (2010).

References

  • Adhya TK, Sharma PD, Kumar Gogoi A (2009) Mitigating Greenhouse Gas Emission from Agriculture. Climate Change and Crops, Springer Berlin Heidelberg, pp 329–344

    Google Scholar 

  • Babcock B, Blackmer AM (1994) The ex post relationship between growing conditions and optimal fertilizer levels. Rev Agr Econ 16:353–362

    Article  Google Scholar 

  • Bachmaier M, Gandorfer M (2009) A conceptual framework for judging the precision agriculture hypothesis with regard to site-specific nitrogen application. Prec Agric 10:95–110

    Article  Google Scholar 

  • Bachmaier M, Gandorfer M (2012) Estimating uncertainty of economically optimum N fertilizer rates. Int J Agron. doi:10.1155/2012/580294, Article ID 580294

  • Berry PM, Kindred DR, Olesen JE, Jørgensen LN, Paveley ND (2010) Quantifying the effect of interactions between disease control, nitrogen supply and land use change on the greenhouse gas emissions associated with wheat production. Plant Pathol 59:753–763

    Article  Google Scholar 

  • Bringezu S, SchĂĽtz H, Arnold K, Merten F, Kabasci S, Borelbach P, Michels C, Reinhardt GA, Rettenmaier N (2009) Global implications of biomass and biofuel use in Germany - Recent trends and future scenarios for domestic and foreign agricultural land use and resulting GHG emissions. J Clean Prod 17:57–68

    Article  Google Scholar 

  • Cherubini F (2010) GHG balances of bioenergy systems—Overview of key steps in the production chain and methodological concerns. Renew Energ 35:1565–1573

    Article  Google Scholar 

  • Cherubini F, Bird ND, Cowie A, Jungmeier G, Schlamadinger B, Woess-Gallasch S (2009) Energy- and greenhouse gas-based LCA of biofuel and bioenergy systems: Key issues, ranges and recommendations. Resour Conserv Recy 53:434–447

    Article  Google Scholar 

  • Chirinda N, Olesen J, Porter J (2012) Root carbon input in organic and inorganic fertilizer-based systems. Plant Soil 1–13. doi:10.1007/s11104-012-1208-5

  • Christensen BT (1986) Straw incorporation and soil organic matter in macro-aggregates and particle size separates. J Soil Sci 37:125–135

    Article  Google Scholar 

  • Ciaian P, Kancs DA (2011) Interdependencies in the energy-bioenergy-food price systems: A cointegration analysis. Resour Energy Econ 33:326–348

    Article  Google Scholar 

  • Dalgaard T, Olesen JE, Petersen SO, Petersen BM, Jørgensen U, Kristensen T, Hutchings NJ, Gyldenkærne S, Hermansen JE (2011) Developments in greenhouse gas emissions and net energy use in Danish agriculture – How to achieve substantial CO2 reduction? Environ Pollut 159:3193–3203

    Article  Google Scholar 

  • Fachagentur Nachwachsende Rohstoffe (2010) Anbau nachwachsender Rohstoffe 2010. Press release No. 724. Fachagentur Nachwachsende Rohstoffe e.V. (FNR), GĂĽlzow, Germany

    Google Scholar 

  • Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P (2008) Land Clearing and the Biofuel Carbon Debt. Science 319:1235–1238

    Article  Google Scholar 

  • Frank MD, Beattie BR, Embleton ME (1990) A comparison of alternative crop response models. Am J Agr Econ 72:597–603

    Article  Google Scholar 

  • Hege U, Krauss M (2000) Der internationale organische StickstoffdauerdĂĽngungsversuch (IOSDV) Puch-Deutschland. UFZ Bericht 15/2000, pp. 37–46.

  • IPCC (2006) Guidelines for national greenhouse gas inventories, volume 4, Agriculture, forestry and other land use, Intergovernmental Panel on Climate Change.

  • Kastens TL, Schmidt JP, Dhuyvetter KC (2003) Yield models implied by traditional fertilizer recommendations and a framework for including non-traditional information. Soil Sci Soc Am J 67:351–364

    Article  Google Scholar 

  • Kätterer T, AndrĂ©n O, Persson J (2004) The impact of altered management on long-term agricultural soil carbon stocks – a Swedish case study. Nutr Cycl Agroecos 70:179–187

    Article  Google Scholar 

  • Kronvang B, Andersen HE, Børgesen C, Dalgaard T, Larsen SE, Bøgestrand J, Blicher-Mathiesen G (2008) Effects of policy measures implemented in Denmark on nitrogen pollution of the aquatic environment. Environ Sci Pollut R 11:144–152

    Article  Google Scholar 

  • Köhn W, Ellmer F, Peschke H, Chmielewski F-M, Erekul O (2000) DauerdĂĽngungsversuch (IOSDV) Berlin-Dahlem Deutschland. UFZ Bericht 15/2000, pp. 25–35.

  • Körschens M (2000) IOSDV Internationale organische StickstoffdauerdĂĽngeversuche. Bericht der Internationalen Arbeitsgemeinschaft Bodenfruchtbarkeit in der Internationalen Bodenkundlichen Union. UFZ-Bericht 15/2000.

  • Kroeze C (1996) Inventory of strategies for reducing anthropogenic emissions of N2O and potential reduction of emissions in The Netherlands. Mitig Adapt Strateg Glob Change 1:115–137

    Article  Google Scholar 

  • Lal R (2004) Carbon emissions from farm operations. Environ Int 30:981–990

    Article  Google Scholar 

  • Lankoski J, Ollikainen M (2011) Biofuel policies and the environment: Do climate benefits warrant increased production from biofuel feedstocks? Ecol Econ 70:676–687

    Article  Google Scholar 

  • Lu F, Wang X, Han B, Ouyang Z, Duan X, Zheng H, Miao H (2009) Soil carbon sequestrations by nitrogen fertilizer application, straw return and no-tillage in China’s cropland. Global Change Biol 15:281–305

    Article  Google Scholar 

  • Meyer-Aurich A (2005) Economic and environmental analysis of sustainable farming practices - a Bavarian case study. Agr Syst 86:190–206

    Article  Google Scholar 

  • Meyer-Aurich A, Schattauer A, Hellebrand HJ, Klauss H, Plöchl M, Berg W (2012) Impact of uncertainties on greenhouse gas mitigation potential of biogas production from agricultural resources. Renew Energ 37:277–284

    Article  Google Scholar 

  • Meyer-Aurich A, Weersink A, Janovicek K, Deen B (2006) Cost efficient rotation and tillage options to sequester carbon and mitigate GHG emissions from agriculture in Eastern Canada. Agr Ecosyst Environ 117:119–127

    Article  Google Scholar 

  • Meyer-Aurich A, Weersink A, Gandorfer M, Wagner P (2010) Optimal site-specific fertilization and harvesting strategies with respect to crop yield and quality response to nitrogen. Agr Syst 103:478–485

    Article  Google Scholar 

  • Pannell DJ (2006) Flat-earth economics: The far-reaching consequences of flat payoff functions in economic decision making. Rev Agr Econ 28:553–566

    Article  Google Scholar 

  • Petersen JB (2010) Oversigt over landsforsøgene 2010. Forsøg og undersøgelser I Dansk LandbrugsrĂĄdgivning. Videncentret for Landbrug, Skejby, Denmark

    Google Scholar 

  • Searchinger T, Heimlich R, Houghton RA, Dong F, Elobeid A, Fabiosa J, Tokgoz S, Hayes D, Yu T-H (2008) Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change. Science 319:1238–1240

    Article  Google Scholar 

  • Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P, McCarl B, Ogle S, O’Mara F, Rice C, Scholes B, Sirotenko O, Howden M, McAllister T, Pan G, Romanenkov V, Schneider U, Towprayoon S, Wattenbach M, Smith J (2008) Greenhouse gas mitigation in agriculture. Philos T Roy Soc B 363:789–813

    Article  Google Scholar 

  • Sutton MA, Oenema O, Erisman JW, Leip A, van Grinsven H, Winiwater W (2011) Too much of a good thing. Nature 472:159–161

    Article  Google Scholar 

  • Sørensen LH (1986) Organic matter and microbial biomass in a soil incubated in the field for 20 years with 14 C-labelled barley straw. Soil Biol Biochem 19:39–42

    Article  Google Scholar 

  • Wissenschaftlicher Beirat fĂĽr Agrarpolitik (2008) Nutzung von Biomasse zur Energiegewinnung: Empfehlungen an die Politik. Sonderheft 216 der Berichte ĂĽber Landwirtschaft, Kohlhammer, Stuttgart

    Google Scholar 

  • Wood S, Cowie A (2004) A review of greenhouse gas emission factors for fertiliser production, IEA bioenergy task 38, http://www.ieabioenergy-task38.org/publications/GHG_Emission_Fertilizer%20Production_July2004.pdf

Download references

Acknowledgement

This study was supported by a research fellowship for Andreas Meyer-Aurich under the OECD Co-operative Research Programme: Biological Resource Management for Sustainable Agricultural Systems, and for Jørgen E. Olesen the study was supported by the Danish Ministry of Food, Agriculture and Fisheries (BIOMAN project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Meyer-Aurich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyer-Aurich, A., Olesen, J.E., Prochnow, A. et al. Greenhouse gas mitigation with scarce land: The potential contribution of increased nitrogen input. Mitig Adapt Strateg Glob Change 18, 921–932 (2013). https://doi.org/10.1007/s11027-012-9399-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11027-012-9399-x

Keywords

Navigation