Skip to main content
Log in

Determination of the limits of applicability of the giulotto method when measuring longitudinal relaxation time in nuclear magnetic flowmeters-relaxometers

  • Published:
Measurement Techniques Aims and scope

Abstract

The method of nuclear magnetic resonance, which is currently the most common in research and control of parameters of condensed matter, and the nuclear magnetic flowmeters and relaxometers that implement this method are described. The features of determining the times of longitudinal and transverse relaxation in nuclear magnetic flowmeters-relaxometers in various modes of medium flow while monitoring its parameters have been established. The advantages of the modulation technique for signal recording in nuclear magnetic flowmeters-relaxometers compared to other recording methods are noted. Using various approximations by the Giulotto method from the Bloch equations, a relation was obtained to determine the longitudinal relaxation time based on the results of measurements of two values of nuclear magnetic resonance signal amplitudes or resonance frequencies at different modulation frequencies. It has been experimentally proven that this relationship has a number of limitations when applied to a flowing liquid. These limitations are associated with the method of recording nuclear magnetic resonance signals and the possibility of their formation at different modulation frequencies of a constant magnetic field, and the amplitudes of the signals differ from each other beyond the measurement error. The reasons that led to such a discrepancy in the ratio of determining the time of longitudinal relaxation have been established. The limits of applicability of the obtained relation are found and it is experimentally proven that within these limits it can be used for reliable measurements of relaxation constants. Based on experimental data, the relationship for determining the longitudinal relaxation time was studied. It has been proven that in a number of cases it is impossible to determine the required time using the specified relationship, although nuclear magnetic resonance signals of the flowing liquid are recorded and it has relaxation times. The results obtained make it possible to eliminate errors when using the nuclear magnetic resonance method to study flowing liquids and solve a number of complex problems in the energy, oil, chemical and pharmaceutical industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gui, M., Shan, J., Liu, Y., Wu, P., Liang, Y., Zhang, F.: Ann. Nucl. Energy 194, 110084 (2023). https://doi.org/10.1016/j.anucene.2023.110084

    Article  Google Scholar 

  2. Zhang, Z., Liu, H., Song, T., Zhang, Q., Yang, L., Bi, K.: Ann. Nucl. Energy 165, 110766 (2022). https://doi.org/10.1016/j.anucene.2021.108766

    Article  Google Scholar 

  3. Kashaev, R.S., Kien, N.T., Tung, C.V., Kozelkov, O.V.: Petroleum Chem. 59, S21–S29 (2019). https://doi.org/10.1134/S0965544119130073

    Article  Google Scholar 

  4. Davydov, V.V., Myazin, N.S., Davydov, R.V.: Meas. Tech. 65(6), 444–452 (2023). https://doi.org/10.1007/s11018-022-02103-7

    Article  Google Scholar 

  5. Gizatullin, B., Gafurov, M., Murzakhanov, F., Mattea, C., Stapf, S.: Langmuir 37(22), 6783–6791 (2021). https://doi.org/10.1021/acs.langmuir.1c00882

    Article  Google Scholar 

  6. Safiullin, K., Kuzmin, V., Bogaychuk, A., Klochkov, A., Tagirov, M.: J. Petroleum Sci. Eng. 210, 110010 (2022). https://doi.org/10.1016/j.petrol.2021.110010

    Article  Google Scholar 

  7. Marusina, M.Y., Karaseva, E.A.: Asian Pac. J. Cancer Prev. 19(10), 2771 (2018). https://doi.org/10.22034/APJCP.2018.19.10.2771

    Article  Google Scholar 

  8. Gizatullin, B., Gafurov, M., Rodionov, A., Stapf, S., Orlinskii, S.: Energy Fuels 32(12), 11261–11268 (2018). https://doi.org/10.1021/acs.energyfuels.8b02507

    Article  Google Scholar 

  9. Kashaev, R.S., Kien, N.C., Tung, T.V., Kozelkov, O.V.: J. Appl. Spectrosc. 86(5), 890–895 (2019). https://doi.org/10.1007/s10812-019-00911-4

    Article  ADS  Google Scholar 

  10. O’Neill, K.T., Klotz, A., Stanwix, P.L.: Flow Meas. Instrum. 58, 104–111 (2017). https://doi.org/10.1016/j.flowmeasinst.2017.10.004

    Article  Google Scholar 

  11. Kashaev, R.S., Suntsov, I.A., Tung, C.V., Usachev, A.E., Kozelkov, O.V.: J. Appl. Spectrosc. 86(2), 289–293 (2019). https://doi.org/10.1007/s10812-019-00814-4

    Article  ADS  Google Scholar 

  12. Zargar, M., Johns, M.L., Aljindan, J.M., Noui-Mehidi, M.N., O’Neill, K.T.: SPE Prod. Oper. 36(2), 423–436 (2021). https://doi.org/10.2118/205351-PA

    Article  Google Scholar 

  13. Davydov, V.V., Myazin, N.S., Davydov, R.V.: Meas. Tech. 65(4), 279–289 (2022). https://doi.org/10.1007/s11018-022-02080-x

    Article  Google Scholar 

  14. Zhernovoi, A.I., Dyachenko, S.V.: Russ. Phys. J. 58(1), 133–137 (2015). https://doi.org/10.1007/s11182-015-0472-2

    Article  Google Scholar 

  15. Marusina, M.Y., Bazarov, B.A., Galaidin, P.A.: Meas. Tech. 57(5), 580–586 (2014). https://doi.org/10.1007/s11018-014-0501-5

    Article  Google Scholar 

  16. Davydov, V.V.: Opt. Spectrosc. 121(1), 18–24 (2016). https://doi.org/10.1134/S0030400X16070092

    Article  ADS  Google Scholar 

  17. Leshe, A.: Nuclear induction. Veb Deutscher Verlag Der Wissenschaften, Berlin, p. 514 (1963). In German

    Google Scholar 

  18. Davydov, V.V., Dudkin, V.I., Karseev, A.Y.: Meas. Tech. 59(3), 317–322 (2015). https://doi.org/10.1007/s11018-015-0707-1

    Article  Google Scholar 

  19. Davydov, V.V., Myazin, N.S., Dudkin, V.I., Davydov, R.V.: Tech. Phys. Lett. 46(11), 1147–1151 (2020). https://doi.org/10.1134/S1063785020110188

    Article  ADS  Google Scholar 

  20. Chiarotti, G., Cristiani, G., Giulotto, L., Lanzi, G.: A nuclear inductor for measurements of thermal relaxation times in liquids. Ii Nuovo Cimento 12(4), 519–525 (1954). In Ital

    Article  ADS  Google Scholar 

  21. Davydov, V.V., Dudkin, V.I., Yu. Karseev, A.: Instruments Exp. Tech. 58(6), 787–793 (2015). https://doi.org/10.1134/S0020441215060056

    Article  Google Scholar 

  22. Abraham, A.A.: The principles of nuclear magnetism. Oxord at the Clarendon Press, p. 646 (1961)

    Google Scholar 

  23. Jacobsohn, B.A., Wangsness, R.K.: Phys. Rev. 73(9), 942–948 (1948). https://doi.org/10.1103/PhysRev.73.942

    Article  ADS  Google Scholar 

  24. Bene, G.J.: Proton relaxation in water-alcohol solution. Helvetica Phys. Acta 24, 367–376 (1951)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vadim V. Davydov.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Translated from Izmerit. Tekhn., No. 12, 54–62, December 2023. Russian DOI https://doi.org/10.32446/0368-1025it.2023-12-54-62

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davydov, V.V., Goldberg, A.A., Dudkin, V.I. et al. Determination of the limits of applicability of the giulotto method when measuring longitudinal relaxation time in nuclear magnetic flowmeters-relaxometers. Meas Tech 66, 958–970 (2024). https://doi.org/10.1007/s11018-024-02312-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11018-024-02312-2

Keywords

Navigation