Skip to main content
Log in

Phase modulation time dynamics of the liquid-crystal spatial light modulator

  • Published:
Measurement Techniques Aims and scope

Abstract

In this paper, liquid-crystal spatial light modulators are presented for precise dynamic manipulation of coherent light fields in space, which are used in diffractive optoelectronic and optical data processing systems. In addition, this paper presents the results of the temporal dynamics study of the HoloEye PLUTO‑2 VIS-016 liquid-crystal spatial light modulator for light field rate modulation analysis. Experiments using binary phase computer-generated holograms and binary focusing phase diffractive optical elements are performed. The time characteristics of the modulator response are determined from the experimental data. Displaying the diffraction structure model on the screen of the spatial light modulator results in a rise time of the diffraction efficiency of 146 ms, and switching to a new model leads to a decay time of 97 ms. The obtained results allow implementing the dynamic generation of an alternating diffraction field at 2 Hz update frequency with −16 dB interference level. Increasing the frequency of updating diffraction structure models increases the level of interframe noise in the generated diffraction field, and when updating with the frequency indicated in the specification, separating the generated distributions is virtually impossible. From the presented results, the studied modulator model can be applied for high-precision formation of complex diffraction fields with a frame update rate lower than stated. Determining the actual frame rate from the rise and decay times of diffraction efficiency allows correctly determining the minimum operating time of an information optical system with a liquid-crystal spatial light modulator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Y. Zoabi, S. Deri-Rozov, and N. Shomron, NPJ Digit. Med., 4, 3 (2021). https://doi.org/10.1038/s41746-020-00372-6.

  2. C. Jiang, H. Zhang, Y. Ren, Z. Han, K. C. Chen, and L. Hanzo, IEEE Wirel. Commun., 24, 98–105 (2017). https://doi.org/10.1109/MWC.2016.1500356WC.

  3. H. Wei, M. Laszewski, and N. Kehtarnavaz, Deep Learning-Based Person Detection and Classification for Far Field Video Surveillance, IEEE 13th Dallas Circuits and Systems Conference (DCAS), Dallas, TX, USA, 1–4 (2018). https://doi.org/10.1109/DCAS.2018.8620111.

  4. R. Collobert, J. Weston, Proceeding 25th International Conference on Machine Learning, Helsinki, Finland, July 5–9, 160–167 (2008). https://doi.org/10.1145/1390156.1390177.

  5. A. J. Macfaden, G. S. D. Gordon, and T. D. Wilkinson, Sci. Rep., 7, 13667 (2017). https://doi.org/10.1038/s41598-017-13733-1.

  6. Miscuglio Mario, Hu Zibo, Li Shurui, et al., Optica, 7, 1812–1819 (2020). https://doi.org/10.1364/OPTICA.408659.

  7. Xu Ping, Hong Chunquan, Cheng Guanxiao, Zhou Liang, and Sun Zhilong, Opt. Express, 23, 6773–6779 (2015). https://doi.org/10.1364/OE.23.006773.

  8. Y. Zuo, Y. Zhao, Y. Chen, S. Du, and J. Liu, Phys. Rev. Appl., 15, 054036 (2021). https://doi.org/10.1103/PhysRevApplied.15.054034.

  9. Y. Long, Z. Wang, B. He, T. Nie, X. Zhang, and T. Fu, Sensors, 19, 7110 (2022). https://doi.org/10.3390/s22197110.

  10. M. Rahman, J. Li, D. Mengu, Y. Rivenson, and A. Ozcan, Light Sci. Appl., 10, 14 (2021). https://doi.org/10.1038/s41377-020-00446-w.

  11. J. Shao, L. Zhou, S. Y. F. Yeung, T. Lei, W. Zhang, and X. Yuan, Life, 13, No. 5, 1148 (2013). https://doi.org/10.3390/life13051148.

  12. N. N. Evtikhiev, V. V. Krasnov, I. P. Ryabcev, V. G. Rodin, R. S. Starikov, and P. A. Cheremkhin, Meas. Techn., 64, No. 5, 346–351 (2021). https://doi.org/10.1007/s11018-021-01940-2.

  13. N. Evtikhiev, E. Zlokazov, S. Starikov, R. Starikov, and D. Shaulskiy, Proceedings of SPIE, 7835, 78350M (2010). https://doi.org/10.1117/12.864457.

  14. E. Zlokazov, Methods and algorithms for computer synthesis of holographic elements to obtain a complex impulse response of optical information processing systems based on modern spatial light modulators, Quantum Electron., 50, No. 7, 643–652 (2020). https://doi.org/10.1070/QEL17291.

  15. V. V. Krasnov, R. S. Starikov, and E. Yu. Zlokazov, Opt. Spectrosc., 129, No. 4, 511–516 (2021).https://doi.org/10.1134/S0030400X21040147.

  16. R. Gerchberg, W. Saxton, “A practical algorithm for the determination of plane from image and diffraction pictures,” Optik, 2, No. 2, 237–246 (1972).

  17. V. Krasnov, Proceedings of SPIE, 10022, 1002226 (2016). https://doi.org/10.1117/12.2246410.

Download references

Funding

This work was supported by the Russian Science Foundation, Grant no. 23-12-00336.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Z. Minikhanov.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Translated from Izmeritel’naya Tekhnika, No. 12, pp. 35–39, December, 2023. Russian DOI: https://doi.org/10.32446/0368-1025it.2023-12-35-39

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Original article submitted November 23, 2023. Original article reviewed November 28, 2023. Original article accepted December 08, 2023

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minikhanov, T.Z., Zlokazov, E.Y., Starikov, R.S. et al. Phase modulation time dynamics of the liquid-crystal spatial light modulator. Meas Tech (2024). https://doi.org/10.1007/s11018-024-02309-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11018-024-02309-x

Keywords

Navigation