Skip to main content
Log in

Measurement of Modulation of the Phase Liquid-Crystal Light Modulator Santec SLM-200 and Analysis of Its Applicability for the Reconstruction of Images from Diffraction Elements

  • OPTOPHYSICAL MEASUREMENTS
  • Published:
Measurement Techniques Aims and scope

We consider the problem of achieving high stability and linearity of phase liquid-crystal space-time light modulators, which are widely used for optical reconstruction of diffractive optical elements, including holograms. Modern high-resolution space-time light modulators one uses a digital signal addressing circuit, which leads to phase shift fluctuations during the frame. For the modern high-resolution phase liquid crystal space-time light modulator Santec SLM-200, the dependences of the phase shift on the level of the addressed signal and time from the beginning of the frame have been measured. Using the Santec SLM-200 light modulator, optical reconstruction of images from diffractive elements of different types was performed, their diffraction efficiency and the quality of the reconstructed images were evaluated. The values of the diffraction efficiency were obtained in the range of 3–10%; a sharp drop in the brightness of the reconstructed images is observed with distance from the optical axis in the plane of reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. J. Lalor, Diffractive Optics for Industrial and Commercial Applications, J. Turunen and F. Wyrowski (eds.), Akademie Verlag, Berlin (1997).

  2. S. T. Wu (ed.) and D. K. Yang, Reflective Liquid Crystal Displays, John Wiley and Sons, Chichester (2005).

  3. S. P. Kotova, A. M. Mayorova, and S. A. Samagin, “Possibility of formation of two-lobed vortex light fields using a modified LC focuser,” Opt. Spektrosk., 126, No. 1, 18–23 (2019), https://doi.org/https://doi.org/10.21883/OS.2019.01.47047.256-18.

  4. U. Schnars and W. Jueptner, Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques, Springer-Verlag, Berlin–Heidelberg (2005).

    Google Scholar 

  5. S. Zwick, T. Haist, M. Warber, and W. Osten, Appl. Opt., 49, No. 25, F47–F58 (2012), https://doi.org/https://doi.org/10.1364/AO.49.000F47.

  6. N. N. Evtikhiev, S. N. Starikov, P. A. Cheryomkhin, et al., Proc. SPIE, 8429, 84291M (2012), https://doi.org/https://doi.org/10.1117/12.922612.

  7. A. Hermerschmidt, S. Osten, S. Krüger, and T. Blümel, Proc. SPIE, 6584, 65840E (2007), https://doi.org/https://doi.org/10.1007/b138284.

  8. A. P. Bondareva, N. N. Evtikhiev, V. V. Krasnov, and S. N. Starikov, “Application of a phase modulator of light in a scheme for optical coding of images with spatially incoherent illumination,” Izv. Vuzov. Radiofiz., 57, No. 8–9, 693–701 (2014).

    Google Scholar 

  9. B. Javidi, A. Carnicer, and M. Yamaguchi, J. Opt., 18, 083001 (2016), https://doi.org/https://doi.org/10.1088/2040-8978/18/8/083001.

  10. S. Dou, X. Shen, B. Zhou, et al., Opt. Laser Technol., 112, 56–64 (2019), https://doi.org/https://doi.org/10.1016/j.optlastec.2018.11.004.

  11. X. Peng, P. Zhang, and L. Cai, Proc. SPIE, 115, 420–426 (2004), https://doi.org/https://doi.org/10.1117/12.571875.

  12. P. A. Cheremkhin, N. N. Evtikhiev, V. V. Krasnov, et al., Laser Phys. Lett., 17, 025204 (2020), https://doi.org/https://doi.org/10.1088/1612-202X/ab644c.

  13. A. Jaramillo-Osorio, J. F. Barrera-Ramírez J. F. A. Mira-Agudelo, et al., J. Opt., 22, 035702 (2020), https://doi.org/https://doi.org/10.1088/2040-8986/ab68f0.

  14. P. A. Ruchka, N. M. Verenikina, I. V. Gritsenko, et al., “Hardware and algorithmic support for correlation detection in holographic wavefront sensors,” Opt. Spektrosk., 127, No. 4, 563–569 (2019), https://doi.org/https://doi.org/10.21883/OS.2019.10.48358.172-19.

  15. P. A. Cheremkhin, N. N. Evtikhiev, V. V. Krasnov, et al., Proc. SPIE, 9006, 900615 (2014), https://doi.org/https://doi.org/10.1117/12.2037569.

  16. D. S. Goncharov, V. V. Krasnov, N. M. Ponomarev, and R. S. Starikov, Proc. SPIE, 10558, 105580Y (2018), https://doi.org/https://doi.org/10.1117/12.2290043.

  17. A. B. Pnev, A. V. Borisova, Ya. A. Denisova, et al., “Minimization of the error in measuring the phase noise of a narrow-band laser using a Mach–Zehnder interferometer based on fiber with retention of polarization,” Izmer. Tekhn., No. 5, 37–42 (2018), https://doi.org/https://doi.org/10.32446/0368-1025it.2018-5-37-42.

  18. D. S. Goncharov, N. N. Evtikhiev, V. V. Krasnov, et al., “Influence of additional phase modulation of amplitude liquid crystal STLM on the characteristics of image recognition in an invariant optical-digital correlator,” Komp. Opt., 43, No. 2, 200–208 (2019), https://doi.org/https://doi.org/10.18287/2412-6179-2019-43-2-200-208.

  19. P. A. Cheremkhin, N. N. Evtikhiev, V. V. Krasnov, et al., Proc. SPIE, 9889, 98891M. (2016), https://doi.org/https://doi.org/10.1117/12.2227767.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Krasnov.

Additional information

Translated from Izmeritel’naya Tekhnika, No. 5, pp. 4–8, May, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evtikhiev, N.N., Krasnov, V.V., Ryabcev, I.P. et al. Measurement of Modulation of the Phase Liquid-Crystal Light Modulator Santec SLM-200 and Analysis of Its Applicability for the Reconstruction of Images from Diffraction Elements. Meas Tech 64, 346–351 (2021). https://doi.org/10.1007/s11018-021-01940-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11018-021-01940-2

Keywords

Navigation